Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T04:03:59.887Z Has data issue: false hasContentIssue false

X-ray and neutron total scattering analysis of Hy·(Bi0.2Ca0.55Sr0.25)(Ag0.25Na0.75)Nb3O10·xH2O perovskite nanosheet booklets with stacking disorder

Published online by Cambridge University Press:  23 May 2016

Peter Metz
Affiliation:
Inamori School of Engineering, Alfred University, Alfred, New York 14802
Robert Koch
Affiliation:
Department of Civil, Environmental, and Mechanical Engineering, University of Trento, Via Mesiano, 77, Trento, TN 38123, Italy
Bernadette Cladek
Affiliation:
Inamori School of Engineering, Alfred University, Alfred, New York 14802
Katharine Page
Affiliation:
Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
Joerg Neuefeind
Affiliation:
Neutron Science Directorate, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37830
Scott Misture*
Affiliation:
Inamori School of Engineering, Alfred University, Alfred, New York 14802
*
Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Ion-exchanged Aurivillius materials form perovskite nanosheet booklets wherein well-defined bi-periodic sheets, with ~11.5 Å thickness, exhibit extensive stacking disorder. The perovskite layer contents were defined initially using combined synchrotron X-ray and neutron Rietveld refinement of the parent Aurivillius structure. The structure of the subsequently ion-exchanged material, which is disordered in its stacking sequence, is analyzed using both pair distribution function (PDF) analysis and recursive method simulations of the scattered intensity. Combined X-ray and neutron PDF refinement of supercell stacking models demonstrates sensitivity of the PDF to both perpendicular and transverse stacking vector components. Further, hierarchical ensembles of stacking models weighted by a standard normal distribution are demonstrated to improve PDF fit over 1–25 Å. Recursive method simulations of the X-ray scattering profile demonstrate agreement between the real space stacking analysis and more conventional reciprocal space methods. The local structure of the perovskite sheet is demonstrated to relax only slightly from the Aurivillius structure after ion exchange.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Billinge, S. J. L. and Levin, I. (2007). “The problem with determining atomic structure at the nanoscale,” Science 316(5824), 561565.Google Scholar
Caglioti, G., Paoletti, A., and Ricci, F. P. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Instrum . 3(4), 223228.Google Scholar
Chhowalla, M., Shin, H. S., Eda, G., Li, L.-J., Loh, K.P. and Zhang, H. (2013). “The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,” Nat. Chem . 5(4), 263275.Google Scholar
Dopita, M., Rudolph, M., Salomon, A., et al. (2013). “Simulations of x-ray scattering on two-dimensional, graphitic and turbostratic carbon structures,” Adv. Eng. Mater . 15(12), 12801291.Google Scholar
Drits, V. A. and Tchoubar, C. (1990). X-Ray Diffraction by Disordered Lamellar Structures. Theory and applications to microdivided silicates and carbons (Springer-Verlag, Berlin, Heidelberg, New York).Google Scholar
Farrow, C. L., Juhas, P., Liu, J. W., Bryndin, D., Božin, E.S., Bloch, J., Proffen, T. and Billinge, S.J.L. (2007). “PDFfit2 and PDFgui: computer programs for studying nanostructure in crystals,” J. Phys. Condens. Matter 19(33), 335219.Google Scholar
Gualtieri, A. F., Ferrari, S., Leoni, M., Grathoff, G., Hugo, R., Shatnawi, M., Paglia, G. and Billinge, S. (2008). “Structural characterization of the clay mineral illite-1M,” J. Appl. Crystallogr. 41(2), 402415.Google Scholar
Guinier, A. (1964). Theorie et technique de la radiocristallographie (Dunod, Paris).Google Scholar
Gunjakar, J. L., Kim, I. Y., Lee, J. M., Jo, Y.K. and Hwang, S.J. (2014). “Exploration of nanostructured functional materials based on hybridization of inorganic 2D nanosheets,” J. Phys. Chem. C 118(8), 38473863.Google Scholar
Hammersley, A. P., Svensson, S. O., and Thompson, A. (1994). “Calibration and correction of spatial distortions in 2D detector systems,” Nucl. Instrum. Methods Phys. Res. A 346(1–2), 312321.Google Scholar
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N. and Hausermann, D. (1996). “Two-dimensional detector software: from real detector to idealised image or two-theta scan,” High Press. Res. 14(4–6), 235248.Google Scholar
Johnsen, R. E. and Norby, P. (2009). “A structural study of stacking disorder in the decomposition oxide of MgAl layered double hydroxide: a DIFFaX+ analysis,” J. Phys. Chem. C 1906119066.Google Scholar
Langford, J. I. and Louër, D. (1982). “Diffraction line profiles and scherrer constants for materials with cylinderical crystallites,” J. Appl. Crystallogr. 15(1), 2026.Google Scholar
Langford, J. I. and Wilson, A. J. C. (1978). “Scherrer after sixty years: a survey and some new results in the determination of crystallite size,” J. Appl. Crystallogr. 11(2), 102113.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAU). Los Alamos, New Mexico: Los Alamos National Laboratory.Google Scholar
Liu, J., Nichols, E. J., Howe, J. and Misture, S.T. (2013). “Enhanced photocatalytic activity of TiO2–niobate nanosheet composites,” J. Mater. Res. 28(03), 424430.Google Scholar
Ma, R. and Sasaki, T. (2010). “Nanosheets of oxides and hydroxides: ultimate 2D charge-bearing functional crystallites,” Adv. Mater. 22(45), 50825104.Google Scholar
Manceau, A., Marcus, M. A., Grangeon, S., Lanson, M., Lanson, B., Gaillot, A. C., Skanthakumar, S. and Soderholm, L. (2013). “Short-range and long-range order of phyllomanganate nanoparticles determined using high-energy X-ray scattering,” J. Appl. Crystallogr. 46(1), 193209.Google Scholar
Minami, N. and Ino, T. (1979). “Diffraction profiles from small crystallites,” Acta Crystallogr. A 35(1), 171176.Google Scholar
Naik, V. V., Chalasani, R., and Vasudevan, S. (2011). “Composition driven monolayer to bilayer transformation in a surfactant intercalated Mg-Al layered double hydroxide supporting information,” Langmuir 27, 05.Google Scholar
Neuefeind, J., Feygenson, M., Carruth, J., Hoffmann, R. and Chipley, K.K. (2012). “The nanoscale ordered materials diffractometer NOMAD at the spallation neutron source SNS,” Nucl. Instrum. Methods Phys. Res. B 287, 6875.Google Scholar
Osada, M. and Sasaki, T. (2012). “Two-dimensional dielectric nanosheets: novel nanoelectronics from nanocrystal building blocks,” Adv. Mater. 24(2), 210228.Google Scholar
Page, K., White, C. E., Estell, E. G., Neder, R.B., Llobet, A. and Proffen, T. (2011) “Treatment of hydrogen background in bulk and nanocrystalline neutron total scattering experiments,” J. Appl. Crystallogr. 44(3), 532539.Google Scholar
Qiu, X., Thompson, J. W., and Billinge, S. J. L. (2004). “PDFgetX2: a GUI-driven program to obtain the pair distribution function from X-ray powder diffraction data,” J. Appl. Crystallogr. 37(4), 678.Google Scholar
Radha, A. V., Shivakumara, C., and Kamath, P. V. (2005). “DIFFaX simulations of stacking faults in layered double hydroxides (LDHs),” Clays Clay Miner. 53(5), 8.Google Scholar
Ramesh, T., Jayashree, R. S., and Kamath, P. V. (2003). Disorder in layered hydroxides: diffax simulation of the X-ray powder diffraction patterns of nickel hydroxide,” Clays Clay Miner. 51(5), 570576.Google Scholar
Scardi, P. and Leoni, M. (2001). “Diffraction line profiles from polydisperse crystalline systems,” Acta Crystallogr. A Found. Crystallogr. 57(5), 604613.Google Scholar
Schaak, R. E. and Mallouk, T. E. (2002). “Perovskites by design: a toolbox of solid-state reactions,” Chem. Mater. 14(4), 14551471.Google Scholar
Schimpf, C., Motylenko, M., and Rafaja, D. (2013). “Quantitative description of microstructure defects in hexagonal boron nitrides using X-ray diffraction analysis,” Mater. Charact. 86, 190199.Google Scholar
Shi, J. (2015). Crystal structure studies, electrical, and magnetic properties of 2, 3, 4, 5-layer Aurivillius oxides. PhD Thesis. Alfred, NY: Alfred University.Google Scholar
Sugimoto, W., Shirata, M., Sugahara, Y., and Kuroda, K. (1999). “New conversion reaction of an Aurivillius phase into the protonated form of the layered perovskite by the selective leaching of the bismuth oxide sheet,” J. Am. Chem. Soc. 121(49), 1160111602.Google Scholar
Sugimoto, W., Shirata, M., Kuroda, K., and Sugahara, Y. (2002). “Conversion of Aurivillius phases Bi2ANaNB3O12 (A = Sr or Ca) into the protonated forms of layered perovskite via acid treatment,” Chem. Mater. 14(7), 29462952.Google Scholar
Thomas, G. S., Rajamathi, M., and Kamath, P. V. (2004) “DIFFaX simulations of polytypism and disorder in hydrotalcite,” Clays Clay Miner. 52(6), 693699.Google Scholar
Treacy, M. M. J., Newsam, J. M., and Deem, M. W. (1991). “A general recursion method for calculating diffracted intensities from crystals containing planar faults (433),” Proc. R. Soc. A Math. Phys. Eng. Sci. 433(1889), 499520.Google Scholar
Ufer, K., Roth, G., Kleeberg, R., Stanjek, H., Dohrmann, R., and Bergmann, J. (2004). “Description of X-ray powder pattern of turbostratically disordered layer structures with a Rietveld compatible approach,” Z. Kristallogr. 219(9), 519527.Google Scholar
Ufer, K., Kleeberg, R., and Bergmann, J. (2006). Quantitative rietveld phase analysis of smectites using a single layer approach. In Fedorov Sessions , pp. 207209, Saint-Petersburg, Russia: Russian Mineralogical Society.Google Scholar
Von Dreele, R. B., Jorgensen, J. D., and Windsor, C. G. (1982). “Rietveld refinement with spallation neutron powder diffraction data,” J. Appl. Crystallogr. 15(6), 581589.Google Scholar
Wong-Ng, W., Huang, Q., Cook, L. P., Levin, I., Kaduk, J. A., Mighell, A. D. and Suh, J. (2004). “Crystal chemistry and crystallography of the Aurivillius phase Bi 5AgNb4O18,” J. Solid State Chem. 177(10), 33593367.Google Scholar
Yang, D. and Frindt, R. F. (2011). “Powder x-ray diffraction of turbostratically stacked layer systems,” J. Mater. Res. 11(07), 17331738.Google Scholar
Supplementary material: File

Metz supplementary material

Appendix 1

Download Metz supplementary material(File)
File 20 KB
Supplementary material: File

Metz supplementary material

Metz supplementary material 1

Download Metz supplementary material(File)
File 1.3 MB