Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-14T11:15:30.022Z Has data issue: false hasContentIssue false

X-ray and neutron powder diffraction studies of (Ba1−xSrx)Y2CuO5

Published online by Cambridge University Press:  01 March 2012

Z. Yang
Affiliation:
Ceramics Division, Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
W. Wong-Ng
Affiliation:
Ceramics Division, Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
L. P. Cook
Affiliation:
Ceramics Division, Materials Science and Engineering Laboratory, National Institute of Standards and Technology, Gaithersburg, Maryland 20899
J. A. Kaduk
Affiliation:
BP-Amoco Chemicals, Naperville, Illinois 60566
Q. Z. Huang
Affiliation:
NIST Center for Neutron Research, National Institute of Standards and Technology, Gaithersburg, Maryland 20899

Abstract

This paper reports the results of crystallography and crystal chemistry investigation of the (Ba1−xSrx)Y2CuO5 (“green phase”) solid solution series by X-ray powder diffraction (XPD) and neutron powder diffraction techniques. The single phase regions for (Ba1−xSrx)Y2CuO5 were determined to be 0⩽x⩽0.3 for samples prepared at 810 °C in 100 Pa pO2, and 0⩽x⩽0.7 for samples prepared at 930 °C in air. All single phase (Ba1−xSrx)Y2CuO5 samples are isostructural to BaY2CuO5 and can be indexed using an orthorhombic cell with the space group Pnma. Lattice parameters, a,b,c and the cell volume, V, of the (Ba1−xSrx)Y2CuO5 members decrease linearly with increasing Sr substitution (x) on the Ba site. The general structure of (Ba1−xSrx)Y2CuO5 can be considered as having a three-dimensional interconnected network of [YO7],[(Ba,Sr)O11], and [CuO5] polyhedra. The copper ions are located inside distorted [CuO5] “square” pyramids. These pyramids are connected by the [Y2O11] groups that are formed from two monocapped [YO7] trigonal prisms sharing a triangular face. The Ba2+ ions are found to reside in distorted 11-fold coordinated cages. The oxygen sites are essentially fully occupied. XPD reference patterns of two members of the series, (Ba0.3Sr0.7)Y2CuO5 and (Ba0.7Sr0.3)Y2CuO5, were prepared for inclusion in the powder diffraction file.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Arendt, P. N. and Foltyn, S. R. (2004). “Biaxially textured IBAD-MgO templates for YBCO-coated conductors, MRS Bull. MRSBEA 29, 543550.CrossRefGoogle Scholar
Aytug, T., Goyal, A., Rutter, N., Paranthaman, M., Thompson, J. R., Zhai, H. Y., and Christen, D. K. (2003). “High-Tc YBa2Cu3O7 coatings on LaMnO3-buffered biaxially textured Cu tapes for coated conductor applications,” J. Mater. Res. JMREEE 18, 872877.CrossRefGoogle Scholar
Balachandran, U. and Chudzik, M. P. (2002). “Method for preparing high-temperature superconductor,” U.S. Patent No. 6,361,598 (March 26, 2002).Google Scholar
Bauer, M., Semerad, R., and Kinder, H. (1999). “YBCO films on metal substrates with biaxially aligned MgO buffer layers,” IEEE Trans. Appl. Supercond. ITASE9 10.1109/77.784678 9, 15021505.CrossRefGoogle Scholar
Brese, N. E. and O’Keeffe, M. (1991). “Bond-valence parameters for solids,” Acta Crystallogr. ASBSDK 10.1107/S0108768190011041 47, 192197.Google Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal-structure database,” Acta Crystallogr. ASBSDK 10.1107/S0108768185002063 41, 244247.CrossRefGoogle Scholar
Buttner, R. H., and Maslen, E. N. (1993). “Structural parameters and electron difference density in Y2BaCuO 5,” Acta Crystallogr. ASBSDK 49, 6266.CrossRefGoogle Scholar
Feenstra, T., Lindemer, T. B., Budai, J. D., and Galloway, M. D. (1991). “Effect of oxygen pressure on the synthesis of YBa2Cu3O7−x thin-films by post-deposition annealing,” J. Appl. Phys. JAPIAU 10.1063/1.348868 69, 65696585.Google Scholar
Feenstra, R. (1999). “Method for making high-critical-current-density YBa2Cu3O7 superconducting layers on metallic substrates,” U.S Patent No. 5,972,847 (October 26, 1999).Google Scholar
Fjellvag, H., Karen, P., and Kjekshus, A. (1987). “Structural-properties and phase-transitions of Y2BaCuO 5 and YBa2Cu3O9−x,” Acta Chem. Scand. (1947-1973) ACSAA4 41, 283293.CrossRefGoogle Scholar
Foltyn, S. R., Tiwari, P., Dye, R. C., Le, M. Q., and Wu, X. D. (1993). “Pulsed-laser deposition of thick YBa2Cu3O7−x films with JC-greater-than-1 MA/CM2,” Appl. Phys. Lett. APPLAB 10.1063/1.110653 63, 18481850.CrossRefGoogle Scholar
Goyal, A., Lee, D. F., Lost, F. A., Specht, E. D., Feenstra, R., Paranthaman, M., Cui, X., Lu, S. W., Martin, P. M., Kroeger, D. M., Christen, D. K., Kang, B. W., Norton, D. P., Park, C., Verebelyi, D. T., Thompson, J. R., Williams, R. K., Aytug, T., and Cantoi, C. (2001). “Recent progress in the fabrication of high-J(c) tapes by epitaxial deposition of YBCO on RABiTS,” Physica C PHYCE6 10.1016/S0921-4534(01)00437-3 357, 903913.Google Scholar
Goyal, A., Paranthaman, M. P., and Schoop, U. (2004). “The RABiTS approach: Using rolling-assisted biaxially textured substrates for high-performance YBCO superconductors,” MRS Bull. MRSBEA 29, 552561.CrossRefGoogle Scholar
Hazen, R. M., Finger, L. W., Angel, R. A., Prewitt, C. T., Ross, N. L., Mao, H. K., and Hadidiacos, C. G. (1987). “Crystallographic description of phases in the Y–Ba–Cu–O superconductor,” Phys. Rev. B PRBMDO 10.1103/PhysRevB.35.7238 35, 72387241.Google Scholar
Hsu, R., Maslen, E. N., and Ishizawa, N. (1996). “A synchrotron X-ray study of the electron density in Y2BaCuO 5,” Acta Crystallogr. ASBSDK 52, 569572.Google Scholar
Hunter, B. A., Town, S. L., Davis, R. L., Russell, G. J., and Taylor, K. N. R. (1989). “Neutron-scattering study of the structure of Y2BaCuO 5 at 294 K and 77 K,” Physica C PHYCE6 161, 594597.CrossRefGoogle Scholar
ICDD (1987). “Powder Diffraction File,” International Centre for Diffraction Data, edited by Frank McClune, , 12 Campus Boulevard, Newtown Square, PA 19073–3272.Google Scholar
Iijima, Y., Kakimoto, K., Yamada, Y., Izumi, T., Saitoh, T., and Shiohara, Y. (2004). “Research and development of biaxially textured IBAD-GZO templates for coated superconductors,” MRS Bull. MRSBEA 29, 564571.Google Scholar
Larson, A. C. and von Dreele, R. B. (1985). “GSAS–General Structure Analysis System,” U.S. Government Contract (W-7405-ENG-36), Los Alamos National Laboratory, U.S. Department of Energy.Google Scholar
Malozemoff, A. P., Annavaraou, S., Fritzemeier, L., Li, Q., Prunier, V., Rupich, M., Thieme, C., Zhang, W., Goyal, A., Paranthaman, M., and Lee, D. F. (2000). “Low-cost YBCO coated conductor technology,” Supercond. Sci. Technol. SUSTEF 10.1088/0953-2048/13/5/308 13, 376473.CrossRefGoogle Scholar
McIntyre, P. C., Cima, M. J., and Roshko, A. (1995). “Epitaxial nucleation and growth of chemically derived Ba2YCu3O7−x thin-films on (001) SrTiO3,” J. Appl. Phys. JAPIAU 10.1063/1.359278 77, 52635272.Google Scholar
Michel, C. and Raveau, B. (1982). “The oxides A2BaCuO 5 (A=Y,Sm,Eu,Gd,Dy,Ho,Er,Yb),” J. Solid State Chem. JSSCBI 10.1016/0022-4596(82)90216-X 43, 7380.CrossRefGoogle Scholar
Paranthaman, M., Goyal, A., List, F. A., Specht, E. D., Lee, D. F., Martin, P. M., He, Q., Christen, D. K., Norton, D. P., Budai, J. D., and Kroeger, D. M. (1997). “Growth of biaxially textured buffer layers on rolled-Ni substrates by electron beam evaporation,” Physica C PHYCE6 10.1016/S0921-4534(96)00713-7 275, 266272.CrossRefGoogle Scholar
Paranthaman, M., Park, C., Cui, X., Goyal, A., Lee, D. F., Martin, P. M., Chirayil, T. G., Verebelyi, D. T., Norton, D. P., Christen, D. K., and Kroeger, D. M. (2000). “YBa2Cu3O7−x-coated conductors with high engineering current density,” J. Mater. Res. JMREEE 15, 26472652.CrossRefGoogle Scholar
Paranthaman, M. P. and Izumi, T. (2004). “High performance YBCO-coated superconductor wires,” MRS Bull. MRSBEA 29, 533536.CrossRefGoogle Scholar
Reade, R. P., Berdahl, P., Russo, R. E., and Garrison, S. M. (1992). “Laser deposition of biaxially textured yttria-stabilized zirconla buffer layers on polycrystalline metallic alloys for high critical current Y–Ba–Cu–O thin films,” Appl. Phys. Lett. 61, 22312233.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889869006558 2, 6571.Google Scholar
Ross, N. L., Angel, R. J., Finger, L. W., Hazen, R. M., and Prewitt, C. T. (1987). “Oxygen-defect perovskites and the 93 K superconductor,” ACS Symp. Ser. ACSMC8 351, 164172.Google Scholar
Roth, R. S., Rawn, C. J., Whitler, J. D., Chiang, C. K., and Wong-Ng, W. (1989). “Phase equilibria and crystal chemistry in the quaternary system Ba–Sr–Y–Cu–O in air,” J. Am. Ceram. Soc. JACTAW 10.1111/j.1151-2916.1989.tb06142.x 72, 395399.Google Scholar
Rupich, M. W., Verebelyi, D. T., Zhang, W., Kodenkandath, T., and Liopen, X. (2004). “Metalorganic deposition of YBCO films for second-generation high-temperature superconductor wires,” MRS Bull. MRSBEA 29, 572578.CrossRefGoogle Scholar
Salinas-Sanchez, A., Garcia-Munoz, J. L., Rodriguez-Carvajal, J., Saez-Puche, R., and Martinez, J. L. (1992). “Structural characterization of R2BaCuO 5 (R = Y, Lu, Yb, Tm, Er, Ho, Dy, Gd, Eu and Sm) oxides by X-ray and neutron-diffraction,” J. Solid State Chem. JSSCBI 10.1016/0022-4596(92)90094-C 100, 201211.CrossRefGoogle Scholar
Sato, S. and Nakada, I. (1989). “Structure of Y2BaCuO 5—A refinement by single-crystal X-ray diffraction,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 10.1107/S0108270188012600 45, 523525.Google Scholar
Selvamanickam, V., Xie, Y., Reeves, J., and Chen, Y. (2004). “MOCVD-based YBCO-coated conductors,” MRS Bull. MRSBEA 29, 579582.Google Scholar
Shaked, H., Ettedgui, H., Gavra, Z., Melamud, M., Johnson, J. R., Reilly, J. J., and Pinto, H. (1993). “Crystal-structure and magnetic-properties of DuY 2BaCuO 5 (u=0.00,0.61,1.31),” J. Alloys Compd. JALCEU 194, 1317.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic-radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. ACACBN 10.1107/S0567739476001551 32, 751767.Google Scholar
Solovyov, V. F., Wiesmann, H. J., Suenaga, M., and Feenstra, R. (1998). “Thick YBa2Cu3O7 films by postannealing of the precursor by high rate e-beam deposition on SrTiO3 substrates,” Physica C PHYCE6 10.1016/S0921-4534(98)00526-7 309, 269274.Google Scholar
Usoskin, A., and Freyhardt, H. C. (2004). “YBCO-coated conductors manufactured by high-rate pulsed laser deposition,” MRS Bull. MRSBEA 29, 583589.CrossRefGoogle Scholar
Watkins, S. F., Fronczek, R. R., Wheelock, K. S., Goodrich, R. G., Hamilton, W. O., and Johnson, W. W. (1988). “Structure of Y2BaCuO 5,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 10.1107/S0108270187008801 44, 36.Google Scholar
Wong-Ng, W., Kuchinski, M. A., McMurdie, H. F., and Paretzkin, B. (1989). “X-ray powder diffraction characterization of BaR2CuO5, (R=yttrium and the lanthanides) and related compounds,” Powder Diffr. PODIE2 4, 28.Google Scholar
Wong-Ng, W., Piermarini, G., and Gallas, M. (1995). “X-ray diffraction study of BaNd 2CuO5 under high pressure,” Adv. X-Ray Anal. AXRAAA 38, 741747.Google Scholar
Wu, L., Zhu, Y., Solovyov, V. F., Wiesmann, H. J., Moodenbaugh, A. R., Sabatini, R. L., and Suenaga, M. (2001). “Nucleation band growth of YBa2Cu3Ox on SrTiO3 and CeO2 by a BaF 2 postdeposition reaction process,” J. Mater. Res. JMREEE 16, 28692884.Google Scholar
Yoshizumi, M., Seleznev, I., and Cima, M. J. (2004). “Reactions of oxyfluoride precursors for the preparation of barium yttrium cuprate films,” Physica C PHYCE6 403, 191199.Google Scholar