Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-12-01T03:51:39.565Z Has data issue: false hasContentIssue false

Variation of structural parameters in dimethylammonium manganese formate [(CH3)2NH2]Mn(HCOO)3 by substitution of transition metals (M = Zn, Co and Ni): by powder XRD method

Published online by Cambridge University Press:  22 May 2019

D. Sornadurai*
Affiliation:
Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
R. M. Sarguna
Affiliation:
Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India
V. Sridharan
Affiliation:
Condensed Matter Physics Division, Materials Science Group, Indira Gandhi Centre for Atomic Research, Kalpakkam, Tamil Nadu, India HBNI, Kalpakkam, Tamil Nadu, India
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Variation of structural parameters of dimethylammonium manganese formate [(CH3)2NH2]Mn[(HCOO)3] upon substitution by the transition elements Zn, Co, and Ni is studied by powder X-ray diffraction (PXRD) technique. These metal–organic framework (MOF) crystals were grown by solvothermal method. The PXRD patterns of all MOFs exhibited rhombohedral structure. PXRD patterns of MOFs were analyzed using Rietveld refinement method. While the parent Mn-MOF and Mn0.9Zn0.1MOF are found to have similar structural parameters, Co and Ni substituted Mn-MOFs have smaller structural parameters than that of parent Mn-MOF. The reason for this variation in the lattice parameters is explained based on the Shannon ionic radii.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Baker, P. J., Lancaster, T., Franke, I., Hayes, W., Blundell, S. J., Pratt, F. L., Jain, P., Wang, Z. M., and Kurmoo, M. (2010). “Muon spin relaxation investigation of magnetic ordering in the hybrid organic-inorganic Perovskites [(CH3)2NH2]M(HCOO)3 (M=Ni,Co,Mn,Cu),” Phys. Rev. B 82, 012407.Google Scholar
Jain, P., Ramachandran, V., Clark, R. J., Zhou, H. D., Toby, B. H., Dalal, N. S., Kroto, H. W., and Cheetham, A. K. (2009). “Multiferroic behavior associated with an order-disorder hydrogen bonding transition in metal-organic frameworks (MOFs) with the Perovskite ABX3 architecture,” J. Am. Chem. Soc. 131, 1362513627.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). “General Structure Analysis System (GSAS),” Los Alamos National Laboratory Technical Report LAUR 86-748, 2004.Google Scholar
Mączka, M., Gągor, A., Macalik, B., Pikul, A., Ptak, M., and Hanuza, J. (2014). “Order-disorder transition and weak ferromagnetism in the Perovskite metal formate frameworks of [(CH3)2NH2][M(HCOO)3] and [(CH3)2ND2][M(HCOO)3] (M=Ni, Mn),” Inorg. Chem. 53, 457467.Google Scholar
Mighell, A. D., Hubbard, C. R., and Stalick., J. K. (1981). NBS*AIDS80, A FORTRAN program for crystallographic data evaluation. NBS (U.S.) Technical Note 1141. Gaithersburg, MD; U.S. Department of Commerce, (NBS*Aids83 is upgraded from NBS*Aids80).Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structure,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Sánchez-Andújar, M., Presedo, S., Yáñez-Vilar, S., Castro-García, S., Shamir, J., and Señarís-Rodríguez, M. A. (2010). “Characterization of the order-disorder dielectric transition in the hybrid organic-inorganic Perovskite-like formate Mn(HCOO)3[(CH3)2NH2],” Inorg. Chem. 49, 15101516.Google Scholar
Schneider, C. A., Rasband, W. S., and Eliceiri, K. W. (2012). “NIH image to ImageJ: 25 years of image analysis,” Nat. Methods 9, 671675.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of inter atomic distances in halides and chaleogenides,” Acta Crystallogr. A32, 751767.Google Scholar
Thomson, R. I., Jain, P., Cheetham, A. K., and Carpenter, M. A. (2012). “Elastic relaxation behavior, magnetoelastic coupling, and order-disorder processes in multiferroic metal-organic frameworks,” Phys. Rev. B 86, 214304.Google Scholar
Toby, B. H. (2001). “EXPGUI, a graphical user interface for GSAS,” J. Appl. Crystallogr. 34, 210213.Google Scholar
Wang, W., Yan, L.-Q., Cong, J.-Z., Zhao, Y.-L., Wang, F., Shen, S.-P., Zou, T., Zhang, D., Wang, S.-G., Han, X.-F., and Sun, Y. (2013). “Magnetoelectric coupling in the paramagnetic state of a metal-organic framework,” Sci. Rep. 3, 2024.Google Scholar
Zhao, H., Huang, Z., Ma, Z., Jia, T., Kimura, H., Fu, Q., Wang, G., Tao, H., Cai, K., and Fa, Z. (2017). “Structural, magnetic and dielectric properties of [(CH3)2NH2]FexMn1−x(HCOO)3,” J. Electron. Mater. 46, 55405545.Google Scholar
Supplementary material: File

Sornadurai et al. supplementary material

Sornadurai et al. supplementary material 1

Download Sornadurai et al. supplementary material(File)
File 546.6 KB