Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-10T13:31:58.476Z Has data issue: false hasContentIssue false

Three new structural forms of thiocolchicoside, a muscle relaxant, as shown by X-ray powder diffraction

Published online by Cambridge University Press:  03 January 2014

R. Toro
Affiliation:
Laboratorio de Cristalografía-LNDRX, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
J. Contreras
Affiliation:
Laboratorio de Cristalografía-LNDRX, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
G. Díaz de Delgado
Affiliation:
Laboratorio de Cristalografía-LNDRX, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
J. M. Delgado*
Affiliation:
Laboratorio de Cristalografía-LNDRX, Departamento de Química, Facultad de Ciencias, Universidad de Los Andes, Mérida 5101, Venezuela
J.L. Pinto
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9, Ciudadela Universitaria, Bucaramanga, Colombia
J.A. Henao
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9, Ciudadela Universitaria, Bucaramanga, Colombia
*
a) Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Thiocolchicoside (THC) is an important active pharmaceutical ingredient (API) used as a muscle relaxant because of its anti-inflammatory and analgesic effects. The only entry for a THC-related compound present in the Cambridge Structural Database (CSD) corresponds to a THC ethanol solvate hydrate (refcode: THCLCS). The diffraction pattern recorded for the THC raw material (C27H33NO10xH2O) is different from the pattern calculated using the THCLCS crystallographic data contained in the CSD. The indexing of the THC raw material pattern, produced an orthorhombic unit cell with a  = 28.018(7) Å, b  = 12.519(2) Å, c  = 8.519(1) Å, and V = 2988.01 Å3. All the diffraction maxima of the powder pattern of a phase recrystallized in water (C27H33NO10S·2H2O) can be indexed in an orthorhombic cell with a  = 25.264(4) Å, b  = 13.537(3) Å, c  = 8.553(1) Å, and V = 2925.12 Å3. Thermogravimetric analysis shows that this compound is a dihydrate phase. Upon heating, a new anhydrous phase (C27H33NO10S) with a monoclinic cell and unit cell parameters: a  = 17.090(5) Å, b  = 19.485(5) Å, c  = 8.526(3) Å, β = 100.30(2)°, and V = 2793.34 Å3 is obtained.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F. H. (2002). “The Cambridge Structural Database: a quarter of a million crystal structures and rising,” Acta Crystallogr., Sect. B: Struct. Sci. 58, 380388.CrossRefGoogle ScholarPubMed
Boultif, A. and Louer, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Cui, Y. (2007). “A material science perspective of pharmaceutical solids,” Int. J. Pharm. 339, 318.CrossRefGoogle ScholarPubMed
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.CrossRefGoogle Scholar
ICDD (2012). PDF-4/Organics 2012 (Database), edited by Kabekkodu, S., International Centre for Diffraction Data, Newtown Square, PA, USA.Google Scholar
Mighell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS* AIDS80: A Fortran Program for Crystalographic Data Evaluation. USA: National Bureau Standards, Technical Note 1141. (NBS*AIDS83 is a newer versión of NBS*AIDS80).CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). “FULLPROF: a program for Rietveld refinement and pattern matching analysis,”in Abstracts of the Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Sweetman, S. C. (Ed.) (2009). Martindale: The Complete Drug Reference. (Pharmaceutical Press, London), 36th ed., p. 1120.Google Scholar
Zhang, G. G. Z., Law, D., Schmitt, E. A., and Qiu, Y. (2004). “Phase transformation considerations during process development and manufacture of solid oral dosage forms,” Adv. Drug Deliv. Rev. 56, 371390.CrossRefGoogle ScholarPubMed