Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2025-01-04T07:40:50.417Z Has data issue: false hasContentIssue false

Synthesis, structural and electrical characterizations of Er0.33Sr1.67Ni0.8Cu0.2O4−δ

Published online by Cambridge University Press:  30 November 2012

Salwa Hamdi
Affiliation:
Unité de Recherche de Chimie des Matériaux et de l'Environnement (UR11ES25), ISSBAT, Université de Tunis El Manar, 9, Avenue Dr. Zoheir Safi, 1006 Tunis, Tunisie
Samia Ouni
Affiliation:
Unité de Recherche de Chimie des Matériaux et de l'Environnement (UR11ES25), ISSBAT, Université de Tunis El Manar, 9, Avenue Dr. Zoheir Safi, 1006 Tunis, Tunisie
Hanen Chaker
Affiliation:
Unité de Recherche de Chimie des Matériaux et de l'Environnement (UR11ES25), ISSBAT, Université de Tunis El Manar, 9, Avenue Dr. Zoheir Safi, 1006 Tunis, Tunisie
Rached Ben Hassen*
Affiliation:
Unité de Recherche de Chimie des Matériaux et de l'Environnement (UR11ES25), ISSBAT, Université de Tunis El Manar, 9, Avenue Dr. Zoheir Safi, 1006 Tunis, Tunisie
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

A new compound Er0.33Sr1.67Ni0.8Cu0.2O4−δ (ErSr5Ni2.4Cu0.6O11) was prepared using the conventional solid state method and annealed at 1423 K in 1 atm of oxygen gas flow. The oxygen non-stoichiometry (δ = 0.47) was determined by iodometric titration. Rietveld refinement using powder X-ray diffraction data confirms that the sample adopts the K2NiF4-type structure (space group I4/mmm (Z = 2), a = 3.760 56(4) and c = 12.3889(1) Ǻ). The final reliability factors were: Rwp = 10.75%, χ2 = 2.51, Rp = 14.80%, RB = 4.77% and RF = 2.73%. Four probe electrical resistivity measurements were performed vs. temperature in the range of 320–540 K. A semiconducting behaviour over the whole range of temperature, with a maximum conductivity of 0.026 S cm−1 is observed at 439 K.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2012

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bassat, J. M., Odier, P., and Gervais, F. (1987). “Two-dimensional plasmons in nonstoichiometric La2NiO4,” Phys. Rev. B 35, 71267128.CrossRefGoogle Scholar
Bassat, J. M., Odier, P., and Loup, J. P. (1994). “The semiconductor-to-metal transition in question in La2−xSrxNiO4+δ (δ > 0 or δ < 0),” J. Solid State Chem. 110, 124135.CrossRefGoogle Scholar
Bendorz, J. G. and Müller, K. A. (1986). “Possible high T c superconductivity in the Ba–La–Cu–O system,” Z. Phys. B 64, 189193.Google Scholar
Boehm, E., Bassat, J. M., Dordor, P., Mauvy, F., Grenier, J. C., and Stevens, P. (2005). “Oxygen diffusion and transport properties in non-stoichiometric Ln2−xNiO4+δ oxides,” J. Solid State Ionics 176, 27172725.CrossRefGoogle Scholar
Brindley, G. W. (1949). “Quantitative X-ray analysis of crystalline substance or phases in there mixture,” Bull. Soc. Chim. Fr. D59D63.Google Scholar
Brian, W. A., Ramanujachary, K. V., Zhang, Z., and Greenblatt, M. (1990). “Investigations on the structural, electrical, and magnetic properties of Nd2−xSrxNiO4+δ,” J. Solid State Chem. 88, 278290.Google Scholar
Buttrey, D. J. and Honig, J. M. (1988). “Influence of nonstoichiometry on the magnetic properties of Pr2NiO4 and Nd2NiO4,” J. Solid State Chem. 72, 3841.CrossRefGoogle Scholar
Chaker, H., Roisnel, T., Potel, M., and Ben Hassen, R. (2004). “Structural and electrical changes in NdSrNiO4−δ by substitute nickel with copper,” J. Solid State Chem. 177, 40674072.CrossRefGoogle Scholar
Chaker, H., Roisnel, T., Cador, O., Amami, M., and Ben Hassen, R. (2006). “Neutron powder diffraction studies of NdSrNi1−xCuxO4−δ, 0 ≤ x ≤ 1, and magnetic properties,” J. Solid State Sci. 8, 142148.CrossRefGoogle Scholar
Chaker, H., Roisnel, T., Ceretti, M., and Ben Hassen, R. (2007). “The synthesis, structural characterization and magnetic properties of compounds in the Ln2O3–SrO–NiO–CuO system for Ln = La, Nd, Gd, Dy, Ho and Er,” J. Alloys Compounds 431, 1622.CrossRefGoogle Scholar
Chaker, H., Roisnel, T., Ceretti, M., and Ben Hassen, R. (2010). “Rietveld refinement of X-ray powder data and bond-valence calculations of NdSrNi0.5Cr0.5O4−δ compound,” Powder Diffr. 25, 241246.CrossRefGoogle Scholar
Ganguly, P. and Rao, C. N. R., (1984). “Crystal chemistry and magnetic properties of layered metal oxides possessing the K2NiF4 or related structures,” J. Solid State Chem., 53, 193216.CrossRefGoogle Scholar
Gopalakrishnan, J., Colsmann, G., and Reuter, B. (1977). “Studies on the La2−xSrxNiO4 (0 ≤ x ≤ 1) system,” J. Solid State Chem. 22, 145149.CrossRefGoogle Scholar
Hill, R. J. (1992). “Rietveld refinement round robin. Analysis of standard X-ray and neutron data for PbSO4,” J. Appl. Cryst. 25, 589610.CrossRefGoogle Scholar
Hamdi, S., Amami, M., Hlil, E. K., and Ben Hassen, R. (2011a). “An X-ray diffraction, magnetic susceptibility and spectroscopic studies of Yb2_xCrxO3,” J. Solid State Chem. 184, 18281833.CrossRefGoogle Scholar
Hamdi, S., Ouni, S., Chaker, H., Rohlicek, J., and Ben Hassen, R. (2011b). “Synthesis, structural and electrical characterizations of DySr5Ni2.4Cu0.6O12−δ,” J. Solid State Chem. 184, 28972901.CrossRefGoogle Scholar
Iguchi, E., Nakatsugawa, H., and Futakuchi, K. (1998). “Polaronic conduction in La2−xSrxCoO4 (0.25 ≤ x ≤ 1.10) below room temperature,” J. Solid State Chem. 139, 176184.CrossRefGoogle Scholar
James, M. and Attfield, J. P. (1993). “The structure and properties of an unusual new nickel (III) oxide YSr5Ni3O11,” J. Solid State Chem. 105, 287293.CrossRefGoogle Scholar
Jammali, M., Chaker, H., Cherif, K., and Ben Hassen, R. (2010). “Investigation on the structural and electrical properties of NdSrNi1−xCrxO4+δ (0.1 ≤ x ≤ 0.9) system,” J. Solid State Chem. 183, 11941199.CrossRefGoogle Scholar
Long, A. R., Pollak, M., and Shklovskii, B. (Eds.) (1991). Hopping Transport in Solids (North-Holland, Amsterdam), p. 207.Google Scholar
Mott, N. F. and Davis, E. A. (1971). Electronic Processes in Non-crystalline Materials (Clarendon Press, Oxford).Google Scholar
Rodriguez-Carvajal, J. (1990). “XVth congress of the international union of crystallography,” Proceedings of the Satellite Meeting on Powder Diffraction. Toulouse, p. 127.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr. A 32, 751767.CrossRefGoogle Scholar
Sreedhar, K. and Rao, C. N. R. (1990). “Electrical and magnetic properties of La2−xSrxNiO4: a tentative phase diagram+,” Mater. Res. Bull. 25, 12351242.CrossRefGoogle Scholar
Takeda, Y., Kanno, R., Sakano, M., Yamamoto, O., Takano, M., Bando, Y., Akinaga, H., Takita, K., and Goodenough, J. B. (1990). “Crystal chemistry and physical properties of La2−xSrxNiO4 (0 ≤ x ≤ 1.6),” Mater. Res. Bull. 25, 293306.CrossRefGoogle Scholar
Takeda, Y., Nishijima, M., Imanishi, N., Kanno, R., Yamamoto, O., and Takano, M. (1992). “Crystal chemistry and transport properties of Nd2−xAxNiO4 (A = Ca, Sr, or Ba, 0 ≤ x ≤ 1.4),” J. Solid State Chem. 96, 7283.CrossRefGoogle Scholar
Tan, X. Y., Chen, C. L., Jin, K. X., Zhao, S. G., and Luo, B. C. (2008). “Electrical transport and photo induced properties in La0.7Sr0.3CrO3 thin film,” Physica B 403, 40504052.CrossRefGoogle Scholar