Hostname: page-component-cd9895bd7-fscjk Total loading time: 0 Render date: 2024-12-26T14:31:42.404Z Has data issue: false hasContentIssue false

Synthesis of cerium oxide (CeO2) by co-precipitation for application as a reference material for X-ray powder diffraction peak widths

Published online by Cambridge University Press:  21 January 2018

Anderson Márcio de Lima Batista*
Affiliation:
Departamento de Engenharia Metalúrgica e de Materiais, Centro de Tecnologia, Universidade Federal do Ceará – UFC, 60455-760, Fortaleza, CE, Brazil
Marcus Aurélio Ribeiro Miranda
Affiliation:
Departamento de Física, Centro de Ciências, Universidade Federal do Ceará – UFC, 60440-970, Fortaleza, CE, Brazil
Fátima Itana Chaves Custódio Martins
Affiliation:
Departamento de Química Analítica e Físico-Química, Centro de Ciências, Universidade Federal do Ceará – UFC, 60455-700, Fortaleza, CE, Brazil
Cássio Morilla Santos
Affiliation:
Departamento de Física, Centro de Ciências, Universidade Federal do Ceará – UFC, 60440-970, Fortaleza, CE, Brazil
José Marcos Sasaki
Affiliation:
Departamento de Física, Centro de Ciências, Universidade Federal do Ceará – UFC, 60440-970, Fortaleza, CE, Brazil
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Several methods can be used to obtain, from powder diffraction patterns, crystallite size and lattice strain of polycrystalline samples. Some examples are the Scherrer equation, Williamson–Hall plots, Warren/Averbach Fourier decomposition, Whole Powder Pattern Modeling, and Debye function analysis. To apply some of these methods, it is necessary to remove the contribution of the instrument to the widths of the diffraction peaks. Nowadays, one of the main samples used for this purpose is the LaB6 SRM660b commercialized by the National Institute of Standard Technology; the width of the diffraction peak of this sample is caused only by the instrumental apparatus. However, this sample can be expensive for researchers in developing countries. In this work, the authors present a simple route to obtain micron-sized polycrystalline CeO2 that have a full width at half maximum comparable with the SRM660b and therefore it can be used to remove instrumental broadening.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Audebrand, N., Auffrédic, J. and Louër, D. (2000). “An X-ray powder diffraction study of the microstructure and growth kinetics of nanoscale crystallites obtained from hydrated cerium oxides,” Chem. Mater., 12, 17911799.Google Scholar
Azároff, L. V. and Buerger, M. J. (1958). The Powder Method in X-ray Crystallography (McGraw-Hill, New York).Google Scholar
Black, D. R., Windover, D., Henins, A., Filliben, J. and Cline, J. P. (2010). “Standard reference material 660b for X-ray metrology,” in Denver X-ray conference on Applications of X-ray Analysis, vol. 54, pp. 140148.Google Scholar
Braga, T. P., Dias, D. F., Sousa, M. F., Soares, J. M. and Sasaki, J. M. (2015). “Synthesis o fair stable FeCo alloy nanocrystallite by proteic sol-gel method using a rotary oven,” J. Alloys Compd. 622, 408417.Google Scholar
Burton, A. W., Ong, K., Rea, T. and Chan, I. Y. (2009). “On the estimation of average crystallite size of zeolites from the Scherrer equation: a critical evaluation of its application to zeolites with one-dimensional pore systems,” Microporous Mesoporous Mater. 117, 7590.Google Scholar
Caglioti, G., Paoletti, A., Ricci, F. P. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nuclear Instrum. 3, issue (4), 223228.CrossRefGoogle Scholar
Cervellino, A., Frison, R., Bertolotti, F. and Guagliardi, A. (2015). “DEBUSSY 2.0: the new release of a Debye user system for nanocrystalline and/or disordered materials,” J. Appl. Cryst. 48, 20262032.Google Scholar
Courbion, G. and Ferey, G. (1988). “Na2ca3al2f14: Aa new example of a structure with ‘‘independent F-’’ – Aa new method of comparison between fluorides and oxides of different formula,” J. Solid State Chem. 76, 426431.Google Scholar
Degen, T., Sadki, M., Bron, E., König, U. and Nénert, G. (2014). “The highscore suite,” Powder Diffr.Powder Diffr. 29, 1318.Google Scholar
Gozzo, F., De Caro, L., Giannini, C., Guagliardi, A., Schmitt, B. and Prodi, A. (2006). “The instrumental resolution function of synchrotron radiation powder diffractometers in the presence of focusing optics,” J. Appl. Cryst. 39, 347353.Google Scholar
Guimarães, G. F., Sasaki, J. M., Sousa, J. P., Miranda, M. A. R., Carvalho, J. A., Menezes, J. W. M., and Oliveira, W. F. (2015) “Aperfeiçoamento introduzido em equipamento de estágio de rotação aplicado em forno tubular”. Brazil patent BR 10 2015 031518 0.Google Scholar
Hall, W. H. (1949). “X-Ray line broadening in metals,” Proc. Phys. Soc. A. 62, 741743.Google Scholar
Holzwarth, U. and Gibson, N. (2011). “The Scherrer equation versus the ‘Debye-Scherrer equation’,” Nat. Nanotech. 6, 534.Google Scholar
James, R. W. (1962). The Optical Principles of the Diffraction of X-Rrays, Vvolume II of The Crystalline State (G Bell and Sons Ltda, London).Google Scholar
Klug, P. and Alexander, L. E. (1974). X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials (Wiley, New York).Google Scholar
Langford, J. I. and Louër, D. (1996). “Powder diffraction,” Rep. Prog. Phys. 59, 131234.Google Scholar
Langford, J. I. and Wilson, A. J. C. (1978). “Scherrer after sixty years: a survey and some new results in the determination of crystallite size,” J. Appl. Cryst. 11, 102113.Google Scholar
Mikutta, R., Kleber, M., Kaiser, K., Jahn, R. (2005). “Review: organic matter removal from soils using hydrogen peroxide, sodium hypochlorite, and disodium peroxodisulfate,” Soil Sci. Soc. Am. J., 69, 120135.Google Scholar
Patterson, A. L. (1939). “The Scherrer formula for X-ray particle size determination,” Phys. Rev. 56, 978982.Google Scholar
Scardi, P., Ortolani, M. and Leoni, M. (2010). “WPPM: microstructural analysis beyond the Rietveld Method,” Mater. Sci. Forum. 651, 155171.Google Scholar
Tok, A. I. Y., Boey, F. Y. C., Dong, Z. and Sun, X. L. (2007) “Hydrothermal synthesis of CeO2 nano-particles,” J. Mater. Process. Technol.Journal of Materials Processing Technology, 190, 217222.Google Scholar
Vives, S., Gaffet, E. and Meunier, C. (2004). “X-ray diffraction line profile analysis of iron ball milled powders,” Mater. Sci. Eng., A. 366, 229238.Google Scholar
Wang, J., Toby, B. H., Lee, P. L., Ribaud, L., Antao, S. M., Kurtz, C., Ramanathan, M., Von Dreele, R. B. and Beno, M. A. (2008). “A dedicated powder diffraction beam line at the Advanced Photon Source: commissioning and early operational results,” Rev. Sci. Instrum., 79, 17.Google Scholar
Warren, B. E. and Averbach, B. L. (1950). “The effect of Cold-Work distortion on X-ray patterns,” J. Appl. Phys. 21, 595599.Google Scholar
Williamson, G. K. and Hall, W. H. (1953). “X-Ray line broadening from filed aluminum and wolfram,” Acta Metall.Acta Metall. 1, 2231.Google Scholar