Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T01:35:47.102Z Has data issue: false hasContentIssue false

Synthesis, crystal structure, and thermal stability of new borates Na3REB2O6 (RE = Pr, Sm, Eu)

Published online by Cambridge University Press:  28 April 2016

Zhixun Wang
Affiliation:
School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China Education Ministry Key Laboratory of Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083, China
Hangkong Li
Affiliation:
Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong Special Administrative Region, China
Gemei Cai*
Affiliation:
School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China Education Ministry Key Laboratory of Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083, China
Zhanpeng Jin
Affiliation:
School of Materials Science and Engineering, Central South University, Changsha, Hunan 410083, China Education Ministry Key Laboratory of Non-ferrous Materials Science and Engineering, Central South University, Changsha 410083, China
*
a) Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Subsolidus phase equilibrium of Na2O–Sm2O3–B2O3 system has been investigated mainly by solid-state reaction and powder X-ray diffraction method. There are nine definite three-phase regions and three ternary compounds determined under present experimental conditions. A novel compound Na3SmB2O6 was found and confirmed in this system, along with its two homogeneous compounds Na3REB2O6 (RE = Pr, Eu) synthesized for the first time. The indexing results showed that all three compounds crystallize in the monoclinic space group P21/c (No.14) with the same structure type as both Na3NdB2O6 and Na3GdB2O6. The lattice parameters (a, b, and c) of new borates Na3REB2O6 (RE = Pr, Sm, Eu) decrease linearly with a decreasing radius of RE ion, which obeys the Lanthanide-contraction rule. The existence of a trigonal BO3 group in the Na3REB2O6 (RE = Pr, Sm) compounds was confirmed by analysis of their infrared absorption spectra. Thermal stabilities of the three new borates have been investigated.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abdullaev, G. K., Mamedov, K. S., and Dzhafarov, G. G. (1975). “Crystal structures of the metaborates Sm(BO2)3 and Gd(BO2)3 ,” Kristallografiya 20, 265269.Google Scholar
Bartram, F. and Felten, E. J. (2002). The Crystal Structure of “Vaterite”-Type Rare-Earth Borates (Golden Book of Phase Transitions, Wroclaw) Vol. 1, pp. 1123.Google Scholar
Bordet, P. and Suard, E. (2009). “Magnetic structure and charge ordering in Fe3BO5: a single-crystal x-ray and neutron powder diffraction study,” Phys. Rev. B 79, 144408.CrossRefGoogle Scholar
Boultif, A. and Louer, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.Google Scholar
Bubnova, R. S., Shepelev, Y. F., Sennova, N. A., and Filatov, S. K. (2002). “Thermal behaviour of the rigid boron-oxygen groups in the alpha-(Na2B8O13) crystal structure,” Z. Kristallogr. 217, 444450.CrossRefGoogle Scholar
Corbel, G., Leblanc, M., Antic-Fidancev, E., and Lemaitre-Blaise, M. (1999). “Crystal structure of sodium rare earth oxyborates Na2Ln2(BO3)2O (Ln=Sm, Eu, and Gd) and optical analysis of Na2Gd2(BO3)2O:Eu3+ ,” J. Solid State Chem. 144, 3544.Google Scholar
Emest, M. L. and Howard, F. M. (1975). “Phase diagrams for ceramists,” J. Am. Chem. Soc. III, 42834284.Google Scholar
Gravereau, P., Chaminade, J. P., Pechev, S., Nikolov, V., Ivanova, D., and Peshev, P. (2002). “Na3La9O3(BO3)8, a new oxyborate in the ternary system Na2O–La2O3–B2O3: preparation and crystal structure,” Solid State Sci. 4, 993998.CrossRefGoogle Scholar
Haque, M. M., Asraf, M. A., Hossen, M. F., Hossan, M. S., Kim, D. K., and Lee, H. I. (2012). “Comparative study on luminescent properties of LiLa2BO5:Eu3+ phosphors synthesized with different methods,” J. Alloys Compd. 539, 195199.Google Scholar
Hashimoto, Y., Wakeshima, M., and Hinatsu, Y. (2003). “Magnetic properties of ternary sodium oxides NaLnO2 (Ln=rare earths),” J. Solid State Chem. 176, 266272.CrossRefGoogle Scholar
Heller, G. (1986). “A survey of structural types of borates and polyborates,” Curr. Chem. 131, 3998.Google Scholar
Huang, C. H. and Chen, T. M. (2011). “A novel single-composition trichromatic white-light Ca3Y(GaO)3(BO3)4:Ce3+, Mn2+, Tb3+ phosphor for UV-light emitting diodes,” J. Phys. Chem. C 115, 23492355.Google Scholar
Hyman, A., Perloff, A., Mauer, F., and Block, S. (1967). “The crystal structure of sodium tetraborate,” Acta Crystallogr. 22, 815821.Google Scholar
Ingle, J. T., Gawande, A. B., Sonekar, R. P., Omanwar, S. K., Wang, Y. H., and Zhao, L. (2014). “Combustion synthesis and optical properties of Oxy-borate phosphors YCa4O(BO3)3:RE3+ (RE = Eu3+, Tb3+) under UV, VUV excitation,” J. Alloys Compd. 585, 633636.Google Scholar
Ivanova, D. I., Pechev, S. P., Nikolov, V. S., and Peshev, P. D. (2000). “Study on the possibilities of synthesis of some new sodium rare earth oxyborates, Na2RE2(BO3)2O,” Bulg. Chem. Commun. 32, 409417.Google Scholar
Jubera, V., Chaminade, J. P., Garcia, A., Guillen, F., and Fouassier, C. (2003). “Luminescent properties of Eu3+-activated lithium rare earth borates and oxyborates,” J. Lumin. 101, 110.Google Scholar
Kanishcheva, A. S., Egorysheva, A. V., Gorbunova, Y. E., Kargin, Y. F., Mikhailov, Y. N., and Skorikov, V. M. (2004). “Crystal structure of the metastable polymorph gamma-Na2(B2O3)2 ,” Zh. Neorg. Khim. 49, 10061011.Google Scholar
Kellner, T., Heine, F., and Huber, G. (1997). “Efficient laser performance of Nd:YAG at 946 nm and intracavity frequency doubling with LiIO3,β-BaB2O4,and LiB3O5 ,” Appl. Phys. B 65, 789792.Google Scholar
Krogh-Moe, J. (1972). “The crystal structure of a sodium triborate modification, beta-Na2O (B2O3)3 ,” Acta Crystallogr. B 28, 15711576.Google Scholar
Krogh-Moe, J. (1974a). “The crystal structure of sodium diborate Na2O(B2O3)2 ,” Acta Crystallogr. B 30, 578582.Google Scholar
Krogh-Moe, J. (1974b). “The crystal structure of alpha-sodium triborate, alpha-Na2O(B2O3)3 ,” Acta Crystallogr. B 30, 747752.Google Scholar
Lou, Y., Li, D., Li, Z., Jin, S., and Chen, X. (2015a). “Unidirectional thermal expansion in KZnB3O6: role of alkali metals,” Dalton Trans. 44, 1976319767.Google Scholar
Lou, Y., Li, D., Li, Z., Zhang, H., Jin, S., and Chen, X. (2015b). “Unidirectional thermal expansion in edge-sharing BO4 tetrahedra contained KZnB3O6 ,” Sci. Rep. 5.Google Scholar
Mascetti, J., Classe, M., and Fouassier, C. (1981). “The crystal chemistry of the new rare-earth sodium borates Na3Ln(BO2)3 (Ln=La, Nd),” J. Solid State Chem. 39, 288293.Google Scholar
Mascetti, J., Fouassier, C., and Hagenmuller, P. (1983). “Concentration quenching of the Nd3+ emission in alkali rare earth borates,” J. Solid State Chem. 50, 204212.Google Scholar
Norrestam, R., Nielsen, K., Sotofte, I., and Thorup, N. (1989). “Structural investigations of two synthetic oxyborates: the mixed magnesium-manganese and the pure cobalt ludwigites, Mg1.93(2)Mn1.07(2) O2BO3 and Co3O2BO3 ,” Z. Kristallogr. 189, 3341.Google Scholar
Naidu, S. A., Boudin, S., Varadaraju, U. V., and Raveau, B. (2012). “Influence of structural distortions upon photoluminescence properties of Eu3+ and Tb3+ activated Na3Ln(BO3)2 (Ln = Y, Gd) borates,” J. Solid State Chem. 190, 186190.Google Scholar
Penin, N., Touboul, M., and Nowogrocki, G. (2002). “Crystal structure of a new form of sodium octoborate beta-Na2B8O13 ,” J. Solid State Chem. 168, 316321.CrossRefGoogle Scholar
Penin, N., Touboul, M., and Nowogrocki, G. (2004). “Crystal structure of two new sodium borates Na3B7O12 and Na2Tl2B10O17 ,” J. Alloys Compd. 363, 104111.Google Scholar
Rietveld, H. M. (1967). “Line profiles of neutron powder-diffraction peaks for structure refinement,” Acta Crystallogr. 22, 151152.Google Scholar
Rodriguez-Carvajal, J. (1990). “Abstract of the Satellite Meeting on Powder Diffraction,” Congress of IUCr, Toulouse, France, P127.Google Scholar
Sun, X. R., Gao, W. L., Yang, T., and Cong, Y. H. (2015). “Sol–gel syntheses, luminescence, and energy transfer properties of α-GdB5O9:Ce3+/Tb3+ phosphors,” Dalton Trans. 44, 22762284.Google Scholar
Vegard, L. (1921). “The constitution of mixed crystals and the space occupied by atoms,” Z. Phys. 5, 1726.Google Scholar
Weir, C. E. and Schroeder, R. A. (1964). “Infrared spectra of the crystalline inorganic borates,” J. Res. Nat. Bur. Stand A 68, 465487.Google Scholar
Wu, L., Zhang, Y., Gui, M. Y., Lu, P. Z., Zhao, L. X., Tian, S., Kong, Y. F., and Xu, J. J. (2012). “Luminescence and energy transfer of a color tunable phosphor: Dy3+-, Tm3+-, and Eu3+-coactivated KSr4(BO3)3 for warm white UV LEDs,” J. Mater. Chem. 22, 64636470.Google Scholar
Wu, Y. C., Sasaki, T., Nakai, S., Yokotani, A., Tang, H. G., and Chen, C. T. (1993). “CsB3O5: a new nonlinear optical crystal,” Appl. Phys. Lett. 62, 26142615.Google Scholar
Xue, D., Betzler, K., Hesse, H., and Lammers, D. (2000). “Nonlinear optical properties of borate crystals,” Solid State Commun. 114, 2125.CrossRefGoogle Scholar
Yang, J. and Dolg, M. (2006). “First-principles electronic structure study of the monoclinic crystal bismuth triborate BiB3O6 ,” J. Phys. Chem. B 110, 1925419263.CrossRefGoogle ScholarPubMed
Zhang, G., Wu, Y., Fu, P., Wang, G., Pan, S., and Chen, C. (2001). “A new nonlinear optical borate crystal Na3La2(BO3)3 ,” Chem. Lett. 5, 456457.Google Scholar
Zhang, G. C., Wu, Y. C., Fu, P. Z., Wang, G. F., Liu, H. J., Fan, G., and Chen., C. T. (2002). “A new sodium samarium borate Na3Sm2(BO3)3 ,” J. Phys. Chem. Solids 63, 145149.Google Scholar
Zhao, S. G., Yao, J. Y., Zhang, E. P., Zhang, G. C., Zhang, J. X., Fu, P. Z., and Wu, Y. C. (2012). “Preparation, structure, and photoluminescence properties of new layered borates KBaRE(B3O6)2 (RE = Y, Eu, and Tb),” Solid State Sci. 14, 305310.CrossRefGoogle Scholar