Hostname: page-component-745bb68f8f-lrblm Total loading time: 0 Render date: 2025-01-11T18:26:02.777Z Has data issue: false hasContentIssue false

Synthesis and X-ray diffraction data of dichloro-dioxido-(4,4′-dimethyl-2,2′-bipyridyl) molybdenum (VI)

Published online by Cambridge University Press:  20 February 2023

Jose L. Pinto
Affiliation:
Grupo de Investigación de Materiales de Interés Geológico y Geotécnico, Dirección de Laboratorios, Servicio Geológico Colombiano SGC, Diagonal 53 No. 34-53, Bogotá́, Colombia
Hernando Camargo
Affiliation:
Grupo de Investigación de Materiales de Interés Geológico y Geotécnico, Dirección de Laboratorios, Servicio Geológico Colombiano SGC, Diagonal 53 No. 34-53, Bogotá́, Colombia
Nelson J. Castellanos*
Affiliation:
Laboratorio de Diseño y Reactividad de Estructuras Sólidas (Lab-DRES, 125), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá́ 111321, Colombia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The dichloro-dioxide-(4,4′-dimethyl-2,2′-bipyridyl)-molybdenum (VI) complex was prepared from molybdenum(VI)-dichloride-dioxide and 4,4′-dimethyl-2,2′-bipyridyl in CH2Cl2 obtaining a clear green solution. The molybdenum complex was precipitated using ethyl ether, separated by filtration and the light green solid washed with ethyl ether. The XRPD pattern for the new compound showed that the crystalline compound belongs to the monoclinic space group P21/n (No.14) with refined unit-cell parameters a = 12.0225(8) Å, b = 10.3812(9) Å, c = 11.7823(9) Å, β = 103.180(9)°, unit-cell volume V = 1431.79 Å3, and Z = 4.

Type
New Diffraction Data
Copyright
Copyright © The Author(s), 2023. Published by Cambridge University Press on behalf of International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

REFERENCES

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A.. 2013. “EXPO2013: A Kit of Tools for Phasing Crystal Structures from Powder Data.” Journal of Applied Crystallography 46 (4): 1231–5. doi:10.1107/S0021889813013113.CrossRefGoogle Scholar
Baird, D. M., Yang, F. L., Kavanaugh, D. J., Finness, G., and Dunbar, K. R.. 1996. “Ligand Effects on the δδ* Band Energies and Intensities in a Series of Diimine Complexes of Dimolybdenum.” Polyhedron 15 (15): 2597–606. doi:10.1016/0277-5387(95)00535-8.CrossRefGoogle Scholar
Bakhtchadjian, R., Tsarukyan, S., Barrault, J., Martinez, F., Tavadyan, L., and Castellanos, N. J.. 2011. “Application of a Dioxo-Molybdenum(VI) Complex Anchored on TiO2 for the Photochemical Oxidative Decomposition of 1-Chloro-4-Ethylbenzene Under O2.” Transition Metal Chemistry 36 (8): 897900. doi:10.1007/s11243-011-9547-2.CrossRefGoogle Scholar
Blanton, J. R., Papoular, R. J., and Louër, D.. 2019. “PreDICT: A Graphical User Interface to the DICVOL14 Indexing Software Program for Powder Diffraction Data.” Powder Diffraction 34 (3): 233–41. doi:10.1017/S0885715619000514.CrossRefGoogle Scholar
Boultif, A., and Louër, D.. 2004. “Powder Pattern Indexing with the Dichotomy Method.” Journal of Applied Crystallography 37 (5): 724–31. doi:10.1107/S0021889804014876.CrossRefGoogle Scholar
Castellanos, N. J. 2014. Molecular Oxygen Activation by Oxo-Molybdenum as a Heterogeneous Catalytic System in Molybdenum and Its Compounds: Applications, Electrochemical Properties and Geological Implications (pp. 87–106). https://novapublishers.com/shop/molybdenum-and-itscompounds-applications-electrochemical-properties-andgeological-implications/.Google Scholar
Castellanos, N. J., Martínez, F., Páez-Mozo, E. A., Ziarelli, F., and Arzoumanian, H.. 2012. “Bis(3,5-Dimethylpyrazol-1-yl)Acetate Bound to Titania and Complexed to Molybdenum Dioxido as a Bidentate N,N′-Ligand. Direct Comparison with a Bipyridyl Analog in a Photocatalytic Arylalkane Oxidation by O2.” Transition Metal Chemistry 37 (7): 629–37. doi:10.1007/s11243-012-9631-2.CrossRefGoogle Scholar
Castellanos, N. J., Martínez, F., Lynen, F., Biswas, S., Van Der Voort, P., and Arzoumanian, H.. 2013. “Dioxygen Activation in Photooxidation of Diphenylmethane by a Dioxomolybdenum(VI) Complex Anchored Covalently onto Mesoporous Titania.” Transition Metal Chemistry 38 (2): 119–27. doi:10.1007/s11243-012-9668-2.CrossRefGoogle Scholar
Castellanos, N. J., Martínez, H., Martínez, F., Leus, K., and Van Der Voort, P.. 2021. “Photo-Epoxidation of (α, β)-Pinene with Molecular O2 Catalyzed by a Dioxo-Molybdenum (VI)-based metal–organic framework.” Research on Chemical Intermediates 47 (10): 4227–44. doi:10.1007/s11164-021-04518-3.CrossRefGoogle Scholar
Dupé, A., Judmaier, M. E., Belaj, F., Zangger, K., and Mösch-Zanetti, N. C.. 2015. “Activation of Molecular Oxygen by a Molybdenum Complex for Catalytic Oxidation.” Dalton Transactions 44 (47): 20514–22. doi:10.1039/c5dt02931g.CrossRefGoogle ScholarPubMed
Heinze, K. 2015. “Bioinspired Functional Analogs of the Active Site of Molybdenum Enzymes: Intermediates and Mechanisms.” Coordination Chemistry Reviews 300: 121–41. doi:10.1016/j.ccr.2015.04.010.CrossRefGoogle Scholar
Hille, R., Nishino, T., and Bittner, F.. 2011. “Molybdenum Enzymes in Higher Organisms.” Coordination Chemistry Reviews 255 (9–10): 1179–205. doi:10.1016/j.ccr.2010.11.034.CrossRefGoogle ScholarPubMed
Ishige, R., Masuda, T., Kozaki, Y., Fujiwara, E., Okada, T., and Ando, S.. 2017. “Precise Analysis of Thermal Volume Expansion of Crystal Lattice for Fully Aromatic Crystalline Polyimides by X-ray Diffraction Method: Relationship between Molecular Structure and Linear/Volumetric Thermal Expansion.” Macromolecules 50 (5): 2112–23. doi:10.1021/acs.macromol.7b00095.CrossRefGoogle Scholar
Kapp, R. W. 2014. Molybdenum in Encyclopedia of Toxicology: Third Edition (pp. 383388). Academic Press. doi:10.1016/B978-0-12-386454-3.00884-8CrossRefGoogle Scholar
Kück, J. W., Reich, R. M., and Kühn, F. E.. 2016. “Molecular Epoxidation Reactions Catalyzed by Rhenium, Molybdenum, and Iron Complexes.” Chemical Record 16 (1): 349–64. doi:10.1002/tcr.201500233.CrossRefGoogle ScholarPubMed
Martínez, H., Amaya, Á. A., Páez-Mozo, E. A., and Martínez, F.. 2018. “Highly Efficient Epoxidation of Alfa-Pinene with O2 Photocatalyzed by Dioxo Mo(VI) Complex Anchored on TiO2 Nanotubes.” Microporous and Mesoporous Materials 265 (November 2017): 202–10. doi:10.1016/j.micromeso.2018.02.005CrossRefGoogle Scholar
Martínez, H., Amaya, Á. A., Paez-Mozo, E. A., Martinez, F., and Valange, S.. 2020. “Photo-Assisted O-Atom Transfer to Monoterpenes with Molecular Oxygen and a DioxoMo(VI) Complex Immobilized on TiO2 Nanotubes.” Catalysis Today (June). doi:10.1016/j.cattod.2020.07.053Google Scholar
Martínez, H., Paez-Mozo, E. A., and Martínez, F.. 2021. “Selective Photo-epoxidation of (R)-(+)- and (S)-(−)-Limonene by Chiral and Non-Chiral Dioxo-Mo(VI) Complexes Anchored on TiO2-Nanotubes.” Topics in Catalysis 64 (1–2): 3650. doi:10.1007/s11244-020-01355-3.CrossRefGoogle Scholar
Martínez, H., Valezi, D. F., Di Mauro, E., Páez-Mozo, E. A., and Martínez, F.. 2022. “Characterization of Peroxo-Mo and Superoxo-Mo Intermediate Adducts in Photo-Oxygen Atom Transfer with O2.” Catalysis Today (February 2021). doi:10.1016/j.cattod.2022.02.016CrossRefGoogle Scholar
Megaw, H. D. 1971. “Crystal Structures and Thermal Expansion.” Materials Research Bulletin 6 (10): 1007–18. doi:10.1016/0025-5408(71)90080-8.CrossRefGoogle Scholar
Pawley, G. S. 1981. “Unit-Cell Refinement from Powder Diffraction Scans.” Journal of Applied Crystallography 14 (6): 357–61. doi:10.1107/s0021889881009618.CrossRefGoogle Scholar
Schoepp-Cothenet, B., Van Lis, R., Philippot, P., Magalon, A., Russell, M. J., and Nitschke, W.. 2012. “The Ineluctable Requirement for the Trans-Iron Elements Molybdenum and/or Tungsten in the Origin of Life.” Scientific Reports 2 (1): 15. doi:10.1038/srep00263.CrossRefGoogle ScholarPubMed
van der Lee, A., and Dumitrescu, D. G.. 2021. “Thermal Expansion Properties of Organic Crystals: A CSD Study.” Chemical Science 12 (24): 8537–47. doi:10.1039/d1sc01076j.CrossRefGoogle ScholarPubMed