Hostname: page-component-745bb68f8f-mzp66 Total loading time: 0 Render date: 2025-01-10T13:11:47.511Z Has data issue: false hasContentIssue false

Synthesis and X-ray diffraction data of dichlorodioxido (4,4-dimethoxycarbonyl-2,2′-bipyridyl) molybdenum(VI)

Published online by Cambridge University Press:  10 October 2013

H.A. Camargo*
Affiliation:
Grupo de Investigación en Nuevos Materiales y Energías Alternativas (GINMEA), Facultad de Química Ambiental, Universidad Santo Tomás, Campus Universitario Floridablanca, Santander, Colombia
N.J. Castellanos
Affiliation:
Grupo de Investigación en Nuevos Materiales y Energías Alternativas (GINMEA), Facultad de Química Ambiental, Universidad Santo Tomás, Campus Universitario Floridablanca, Santander, Colombia
C.C. Rosas
Affiliation:
Grupo de Investigación en Nuevos Materiales y Energías Alternativas (GINMEA), Facultad de Química Ambiental, Universidad Santo Tomás, Campus Universitario Floridablanca, Santander, Colombia
J.A. Henao
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE). Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga, Colombia
*
a) Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The dichlorodioxido(4,4′-dimethoxycarbonyl-2,2′-bipyridyl)molybdenum(VI) complex was prepared from molybdenum(VI) dichloride dioxide and 4,4-dimethoxycarbonyl-2,2-bipyridyl in CH2Cl2 obtaining a clear green solution. The molybdenum complex was separated by precipitation with ethyl ether. The XRPD pattern for the new compound showed that the crystalline compound belongs to the monoclinic space group P21 /c (No 14) with refined unit-cell parameters a = 12.104(1) Å, b = 14.933 (2) Å, c = 11.010 (2) Å and ß = 115.409° (9). The volume of the unit cell is V = 1797.6 (3) Å3.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amini, M., Haghdoost, M., and Bagherzadeh, M. (2013). “Oxido-peroxido molybdenum(VI) complexes in catalytic and stoichiometric oxidations,” Coord. Chem. Rev. 257, 10931121.Google Scholar
Arzoumanian, H. (1998). “Molybdenum-oxo chemistry in various aspects of oxygen atom transfer processes,” Coord. Chem. Rev. 178–180, 191202.Google Scholar
Arzoumanian, H. and Bakhtchadjian, R. (2006). “Synthesis and characterization of halo, cyanato, thiocyanato and selenocyanato molybdenum(VI) dioxo and dioxo-μ-oxo complexes,” Transit. Met. Chem. 31, 681689.Google Scholar
Arzoumanian, H., Castellanos, N. J., Martínez, F., Paez-Mozo, E. A., and Ziarelli, F. (2010). “Silicon-assisted direct covalent grafting on metal oxide surfaces: synthesis and characterization of carboxylate N,N'-ligands on TiO2 ,” Eur. J. Inorg. Chem. 11, 16331641.Google Scholar
Bakhtchadjian, R., Tsarukyan, S., Barrault, J., Martinez, F., Tavadyan, L., and Castellanos, N. J. (2011). “Application of a dioxo-molybdenum(VI) complex anchored on TiO2 for the photochemical oxidative decomposition of 1-chloro-4-ethylbenzene under O2 ,” Transit. Met. Chem. 36, 897900.Google Scholar
Boultif, A. and Loüer, D. (2004). “Indexing of powder diffraction patterns of low symmetry lattices by successive dichotomy method,” J. Appl. Crystallogr. 37, 724731.Google Scholar
Castellanos, N. J., Martínez, F., Páez-Mozo, E. A., Ziarelli, F., and Arzoumanian, H. (2012). “Bis(3,5-dimethylpyrazol-1-yl)acetate bound to titania and complexed to molybdenum dioxido as a bidentate N,N'-ligand. Direct comparison with a bipyridyl analog in a photocatalytic arylalkane oxidation by O2 ,” Transit. Met. Chem. 37, 629637.Google Scholar
Castellanos, N. J., Martínez, F., Lynen, F., Biswas, S., Van Der Voort, P., and Arzoumanian, H. (2013). “Dioxygen activation in photooxidation of diphenylmethane by a dioxomolybdenum(VI) complex anchored covalently onto mesoporous titania,” Transit. Met. Chem. 38, 119127.Google Scholar
Constable, E. C. and Steel, P. J. (1989). “N,N'-Chelating biheteroaromatic ligands; a survey,” Coord. Chem. Rev. 93, 205223.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.Google Scholar
Enemark, J. H., Cooney, J. J. A., Wang, J. J., and Holm, R. H. (2004). “Synthetic analogues and reaction systems relevant to the molybdenum and tungsten oxotransferases,” Chem. Rev. 104, 11751200.Google Scholar
Günyar, A., Zhou, M. D., Drees, M., Baxter, P., Bassioni, G., Herdtweck, E., and Kühn, F. E. (2009). “Studies on bis(halogeno) dioxomolybdenum(VI)-bipyridine complexes: synthesis and catalytic activity,” Dalton Trans. 40, 87468754.Google Scholar
Holm, R. H., Solomon, E. I., Majumdar, A., and Tenderholf, A. (2011). “Comparative molecular chemistry of molybdenum and tungsten and its relation to hydroxylase and oxotransferase enzymes,” Coord. Chem. Rev. 255, 9931015.Google Scholar
Ittel, S. D., Johnson, L. K., and Brookhart, M. (2000). “Late-metal catalysts for ethylene homo- and copolymerization,” Chem. Rev. 100, 11691203.Google Scholar
Kühn, F. E., Lopes, A. D., Santos, A. M., Hertdweck, E., Haider, J. J., Romäo, C. C., and Santos, A. G. (2000). “Lewis base adducts of bis-halogeno-dioxomolybdenum(VI): syntheses, structures, and catalytic applications,” J. Mol. Catal. A: Chem. 151, 147160.Google Scholar
Laugier, J. and Bochu, B. (2002). CHEKCELL. “LMGP-Suite Suite of Programs for the interpretation of X-ray. Experiments,” (ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042, Saint Martin d'Hères, France). http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/.Google Scholar
Miguell, A. D., Hubberd, C. R., and Stalick, J. K. (1981). NBS* AIDS80: A FORTRAN Program for Crystallographic Data Evaluation. Tech. Note 1141. USA: National Bureau of Standards.Google Scholar
Paez, C. A., Castellanos, N. J., Martinez, F., Ziarelli, F., Agrifoglio, G., Paez-Mozo, E. A., and Arzoumanian, H. (2008). “Oxygen atom transfer photocatalyzed by molybdenum(VI) dioxodibromo-(4,40-dicarboxylate-2,20-bipyridine) anchored on TiO2 ,” Catal. Today 133–135, 619624.Google Scholar
Páez, C. A., Lozada, O., Castellanos, N. J., Martínez, F., Ziarelli, F., Agrifoglio, G., Paez-Mozo, E. A., and Arzoumanian, H. (2009). “Arylalkane photo-oxidation under visible light and O2 catalyzed by molybdenum(VI)dioxo-dibromo (4,4′-dicarboxylato-2,2′-bipyridine) anchored on TiO2 ,” J. Mol. Cat. A.: Chem. 299, 5359.Google Scholar
Rachinger, W. A. (1948). “A correction for the α1 α2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. 25, 254.Google Scholar
Saviztky, A. and Golay, M. J. (1964). “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 8, 16271639.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “ F N : a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.Google Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder diffraction data from photographs,” J. Appl. Crystallogr. 8, 17.Google Scholar