Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T13:39:32.162Z Has data issue: false hasContentIssue false

Synthesis and X-ray diffraction data of 1-N-(3-pyridylmethyl)aminonaphthalene hydrochloride

Published online by Cambridge University Press:  09 April 2014

L.R. Morantes
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9, Bucaramanga, Colombia
C.F. Medina
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9, Bucaramanga, Colombia
J.A. Henao
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE), Escuela de Química, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9, Bucaramanga, Colombia
V.V. Kouznetsov
Affiliation:
Laboratorio de Química Orgánica y Biomolecular (LQOBio), Escuela de Química, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9, Bucaramanga, Colombia
H.A. Camargo*
Affiliation:
Grupo de Investigación en Nuevos Materiales y Energías Alternativas (GINMEA), Universidad Santo Tomás, Facultad de Química Ambiental, Campus Universitario Floridablanca, Santander, Colombia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The title compound 1-N-(3-pyridylmethyl)aminonaphthalene hydrochloride (C16H15N2Cl) was obtained by a reaction of α-naphthylamine (1) and N-pyridincarboxaldehyde (2) in anhydrous ethanol in the first step. The formed imine (3) was reduced with sodium borohydride in anhydrous methanol to give the product 1-N-(3-pyridylmethyl)aminonaphthalene (4). Finally, the hydrochloride was prepared by addition of a hydrochloric acid–ethyl acetate solution (ratio 1:3) with constant stirring and maintaining the temperature between 0 and 5 °C, obtaining a yellow polycrystalline solid corresponding to the respective derivative (5). The X-ray powder diffraction pattern for the new compound (5) was obtained. The compound (5) crystallizes in a monoclinic system with the space group P21/m (No. 11) and refined unit-cell parameters: a = 16.257 (8) Å, b = 9.236 (7) Å, c = 13.221 (6) Å, β = 94.87° (5), Z = 6, and V = 1978 (1) Å3.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A. and Loüer, D. (2006). “Indexing of powder diffraction patterns of low symmetry lattices by successive dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Buhrke, V., Jenkins, R., and Smith, D. (1998). Preparation of Specimens for X-ray Fluorescence and X-ray Diffraction Analysis (Wiley, New York), pp. 141142.Google Scholar
Camargo, H. A., Henao, J. A., Amado, D. F., and Kouznetsov, V. V. (2010). “Synthesis and X-ray diffraction data of 1-N-4-pyridylmethylamino naphthalene,” Powder Diffr. 25(1), 7274.Google Scholar
Camargo, H. A., Habran, N. M., Henao, J. A., Amado, D. F., and Kouznetsov, V. V. (2011). “Synthesis and X-ray diffraction data of 1-[N-(methyl)-(3,5-dimethylphenylamino)]methylnaphthalene,” Powder Diffr. 26(1), 7477.CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.Google Scholar
Dong, C. (1999). “PowderX: Windows-95-based program for powder X-ray diffraction data processing,” J. Appl. Crystallogr. 32, 838.Google Scholar
Graham, T. W. and Fryhte, G. B. (2011). The Chemistry of Biologically Important Amines (Wiley, México), Vol. 10, pp. 922924.Google Scholar
Kouznetsov, V. V., Vargas, L. Y., Sortino, M., Vásquez, Y., Gupta, M. D., Freile, M., Enriz, R. D., and Zacchino, S. A. (2008). “Antifungal and cytotoxic activities of some N-substituted aniline derivates bearing a hetaryl fragment,” Bioorg. Med. Chem. 16, 794809.Google Scholar
Laugier, J. and Bochu, B. (2002). CHEKCELL. “LMGP-Suite Suite of Programs for the interpretation of X-ray. Experiments”, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/.Google Scholar
Miguell, A. D., Hubbard, C. R., and Stalick, J. K. (1981). NBS* AIDS80: A FORTRAN Program for Crystallographic Data Evaluation (Technical Note 1141). Washington, DC: National Bureau of Standards.Google Scholar
Rachinger, W. A. (1948). “A correction for the α1 α2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. 25, 254.Google Scholar
Saviztky, A. and Golay, M. J. (1964) “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 16271639.Google Scholar
Schäfer-Korting, M.Schoellmann, C., and Korting, H. C. (2008). “Fungicidal activity plus reservoir effect allows short treatment courses with Terbinafine in Tinea Pedis,” Skin Pharmacol. Physiol. 21, 203210.Google Scholar
Serajuddin, A. (2007). “Salt formation to improve drug solubility,” Adv. Drug Deliv. Rev. 59, 603616.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “FN: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.Google Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder diffraction data from photographs,” J. Appl. Crystallogr. 8, 17.CrossRefGoogle Scholar
Vargas, L. Y., Castelli, M. V., Kouznetsov, V. V., Urbina, J. M., López, S. N., Sortino, M., Enriz, R. D., Ribas, J. C., and Zacchino, S. A. (2003). “In vitro antifungal activity of new series of homoallylamines and related compounds with inhibitory properties of the synthesis of fungal cell wall polymers,” Bioorg. Med. Chem. 11, 15311550.Google Scholar