Hostname: page-component-586b7cd67f-t8hqh Total loading time: 0 Render date: 2024-11-30T15:30:50.907Z Has data issue: false hasContentIssue false

Synthesis and X-ray diffraction data for dibromo-dioxo-(1,10-phenanthroline-N,N′)-molybdenum(VI) (C12H8N2MoBr2O2)

Published online by Cambridge University Press:  17 February 2016

H. A. Camargo*
Affiliation:
Grupo de Investigación en Nuevos Materiales y Energías Alternativas (GINMEA), Universidad Santo Tomás, Facultad de Química Ambiental, Campus Universitario Floridablanca, Santander, Colombia
J. A. Henao
Affiliation:
Grupo de Investigación en Química Estructural (GIQUE). Escuela de Química, Facultad de Ciencias, Universidad Industrial de Santander, A.A. 678, Carrera 27, Calle 9 Ciudadela Universitaria, Bucaramanga – Colombia
N. J. Castellanos
Affiliation:
Estado Sólido y Catálisis Ambiental (ESCA), Departamento de Química, Facultad de Ciencias, Universidad Nacional de Colombia, Carrera 30 No. 45-03, Bogotá, Colombia
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The dibromo-dioxo-(1,10-phenanthroline-N,N′)-molybdenum(VI) complex (C12H8N2MoBr2O2) was prepared from molybdic acid and 1,10-phenanthroline using hydrobromic acid as solvent. The molybdenum complex solid was separated by filtration and washed with ethyl ether. The X-ray powder diffraction pattern for the title compound was analyzed and found to crystallizes in monoclinic system, space group P21/c (No14) with refined unit-cell parameters a = 12.036 (1), b = 9.819 (1), c = 12.671 (2) Å, and β = 110.44° (1). The volume of the unit cell is V = 1403.2 (3) Å3.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abolhosseini, Sh. A., Mahjoub, A. R., Eslami-Moghadam, M., and Fakhri, H. (2014). “Dichloro (1,10-phenanthroline-5,6-dione) palladium (II) complex supported by mesoporous silica SBA-15 as a photocatalyst for degradation of 2,4-dichlorophenol,” J. Mol. Struct. 1076, 568575.CrossRefGoogle Scholar
Accorsi, G., Listorti, A., Yoosaf, K., and Armaroli, N. (2009). “1,10-Phenanthrolines: versatile building blocks for luminescent molecules, materials and metal complexes,” Chem. Soc. Rev. 38, 16901700.CrossRefGoogle Scholar
Arzoumanian, H., Castellanos, N. J., Martínez, F. O., Páez-Mozo, E. A., and Ziarelli, F. (2010). “Silicon-assisted direct covalent grafting on metal oxide surfaces: synthesis and characterization of carboxylate N,N′-ligands on TiO2 ,” Eur. J. Inorg. Chem. 2010, 16331641.Google Scholar
Boultif, A. and Loüer, D. (2004). “Indexing of powder diffraction patterns of low symmetry lattices by successive dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Cai, Z., Liu, L., and Zhou, M. (2013). “Synthesis of nickel(II) complexes containing modified phenanthroline ligands for potential nonlinear optical applications,” Opt. Mater. 35, 14811486.CrossRefGoogle Scholar
Camargo, H. A., Castellanos, N. J., Rosas, C. C., and Henao, J. A. (2014). “Synthesis and X-ray diffraction data of dichlorodioxido (4,4-dimethoxycarbonyl-2,2′-bipyridyl) molybdenum(VI),” Powder Diffr. 29, 1, 4245.Google Scholar
Castellanos, N., Martínez, F., Páez-Mozo, E., Ziarelli, F., and Arzoumanian, H. (2012). “Bis(3,5-dimethylpyrazol-1-yl)acetate bound to titania and complexed to molybdenum dioxido as a bidentate N,N′-ligand. Direct comparison with a bipyridyl analog in a photocatalytic arylalkane oxidation by O2 ,” Transit. Met. Chem. 37, 629637.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. 1, 108113.Google Scholar
Ganeshpandian, M., Ramakrishnan, S., Palaniandavar, M., Suresh, E., Riyasdeen, A., and Akbarsha, M. A. (2014). “Mixed ligand copper(II) complexes of 2,9-dimethyl-1,10-phenanthroline: tridentate 3N primary ligands determine DNA binding and cleavage and cytotoxicity,” J. Inorg. Biochem. 140, 202212.Google Scholar
Heidary, D. K., Howerton, B. S., and Glazer, E. C. (2014). “Coordination of hydroxyquinolines to a ruthenium bis-dimethyl-phenanthroline scaffold radically improves potency for potential as antineoplastic agents,” J. Med. Chem. 57, 89368946.Google Scholar
İnci, D., Aydın, R., Yılmaz, D., Gençkal, H. M., Vatan, Ö., Çinkılıç, N., and Zorlu, Y. (2015). “New water-soluble copper (II) complexes including 4,7-dimethyl-1,10-phenanthroline and l-tyrosine: synthesis, characterization, DNA interactions and cytotoxicities,” Spectrochim. Acta A: Mol. Biomol. Spectrosc. 136B, 761770.Google Scholar
Kaur, N. and Alreja, P. A. (2015). “Novel 1,10-phenanthroline based chemosensor for differential metal ion sensing and constructing molecular logic gates,” Tetrahedron Lett. 56, 182186.CrossRefGoogle Scholar
Kurtz, D. A., Dhakal, B., Hulme, R. J., Nichol, G. S., and Felton, G. A. N. (2015). “Correlations between photophysical and electrochemical properties for a series of new Mn carbonyl complexes containing substituted phenanthroline ligands,” Inorg. Chim. Acta 427, 2226.Google Scholar
Kwon, Y., Sunesh, C. D., and Choe, Y. (2015). “Light-emitting properties of cationic iridium complexes containing phenanthroline based ancillary ligand with blue-green and green emission colors,” Opt. Mater. 39, 4045.CrossRefGoogle Scholar
Laugier, J. and Bochu, B. (2002). CHEKCELL. “LMGP-Suite Suite of Programs for the interpretation of X-ray. Experiments”, ENSP/Laboratoire des Matériaux et du Génie Physique, BP 46. 38042 Saint Martin d'Hères, France. http://www.inpg.fr/LMGP and http://www.ccp14.ac.uk/tutorial/lmgp/ Google Scholar
Liu, B., Pan, S., Liu, B., and Chen, W. (2014). “Di-, tri-, and tetranuclear copper(I) complexes of phenanthroline-linked dicarbene ligands,” Inorg. Chem. 53, 1048510497.Google Scholar
Miguell, A. D., Hubberd, C. R., and Stalick, J. K. (1981). “NBS* AIDS80: a FORTRAN program for crystallographic data evaluation,” National Bureau of Standards (USA), Tech. Note 1141.Google Scholar
Páez, C. A., Castellanos, N. J., Martínez, O. F., Ziarelli, F., Agrifoglio, G., Páez-Mozo, E. A., and Arzoumanian, H. (2008). “Oxygen atom transfer photocatalyzed by molybdenum(VI) dioxodibromo-(4,4′-dicarboxylate-2,2′-bipyridine) anchored on TiO2 ,” Catal. Today 133135, 619624.Google Scholar
Páez, C. A., Lozada, O., Castellanos, N. J., Martínez, F. O., Ziarelli, F., Agrifoglio, G., Páez-Mozo, E. A., and Arzoumanian, H. (2009). “Arylalkane photo-oxidation under visible light and O2 catalyzed by molybdenum(VI)dioxo-dibromo (4,4′-dicarboxylato-2,2′-bipyridine) anchored on TiO2 ,” J. Mol. Catal. A: Chem. 299, 5359.CrossRefGoogle Scholar
Rachinger, W. A. (1948). “A correction for the α1 α2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. 25, 254.CrossRefGoogle Scholar
Sammes, P. G. and Yahioglu, G. (1994). “1,10-Phenanthroline: a versatile ligand,” Chem. Soc. Rev. 23, 327334.CrossRefGoogle Scholar
Saviztky, A. and Golay, M. J. (1964). “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem. 36, 16271639.Google Scholar
Smith, G. S. and Snyder, R. L. (1979). “ F N : a criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. 12, 6065.CrossRefGoogle Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder diffraction data from photographs,” J. Appl. Crystallogr. 8, 17.Google Scholar
Yang, Y., Wang, W., Liu, Y., Wang, F., Chai, D., and Lei, Z. (2015). “Pd nanoparticles supported on phenanthroline modified carbon as high active electrocatalyst for ethylene glycol oxidation,” Electrochim. Acta 154, 18.CrossRefGoogle Scholar
Supplementary material: File

Camargo supplementary material

Camargo supplementary material 1

Download Camargo supplementary material(File)
File 52.8 KB
Supplementary material: File

Camargo supplementary material

Camargo supplementary material 2

Download Camargo supplementary material(File)
File 17.2 KB