Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-02T08:01:02.708Z Has data issue: false hasContentIssue false

Synthesis and X-ray characterization of Li(1−2x)NixTiO(PO4) (0≤x≤0.50)

Published online by Cambridge University Press:  05 March 2012

B. Manoun*
Affiliation:
Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M’Sik Boulevard Idriss El Harti, Sidi Othman B.P. 7955 Casablanca, Morocco
A. El Jazouli
Affiliation:
Laboratoire de Chimie des Matériaux Solides, Faculté des Sciences Ben M’Sik Boulevard Idriss El Harti, Sidi Othman B.P. 7955 Casablanca, Morocco
P. Gravereau
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux, 87, Av. du Dr. Schweitzer 33608 Pessac cedex, France
J. P. Chaminade
Affiliation:
Institut de Chimie de la Matière Condensée de Bordeaux, 87, Av. du Dr. Schweitzer 33608 Pessac cedex, France

Abstract

Li(1−2x)NixTiO(PO4) oxyphosphate powders were prepared from dilute solutions of NiCl2⋅6H2O, Li2CO3, (NH4)2HPO4, and TiCl4 in ethanol. The final temperature was 850 °C. Li(1−2x)NixTiO(PO4) oxyphosphates with 0≤x≤0.10 crystallize in the orthorhombic system with space group Pnma, while those with 0.10<x≤0.25 crystallize in the monoclinic system with space group P21/c.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A., and Louër, D. (1991). “Indexing of powder diffraction patterns for low symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. JACGAR 24, 987993. acr, JACGAR CrossRefGoogle Scholar
Gravereau, P., Chaminade, J. P., Manoun, B., Krimi, S., and El Jazouli, A. (1999). “Ab initio and Rietveld refinement of the crystal structure of Ni0.50TiO(PO4),Powder Diffr. PODIE2 14, 1015. pdj, PODIE2 CrossRefGoogle Scholar
Manoun, B., El Jazouli, A., Gravereau, P., Chaminade, J. P., and Bourre, F. (2002). “Determination and Rietveld refinement of the crystal structure of Li0.50Ni0.25TiO(PO4) from powder X-ray and neutron diffraction,” Powder Diffr. PODIE2 17, 290294. pdj, PODIE2 Google Scholar
Manoun, B., El Jazouli, A., Gravereau, P., and Chaminade, J. P. (in progress, 2003). “Rietveld refinements of a new solid solution Li(1−2x)NixTiO(PO4) (0≤x≤0.5).”Google Scholar
Nagornyi, P. G., Kapshuk, A. A., Stus’, N. V., Slobodyanik, N. S., and Chernega, A. N. (1991). “Preparation and structure of the lithium titanium double phosphate LiTiOPO4,Russ. J. Inorg. Chem. RJICAQ 36, 15511552. rji, RJICAQ Google Scholar
Robertson, A., Fletcher, J. G., Skakle, J. M. S., and West, A. R. (1994). “Synthesis of LiTiPO5 and LiTiAsO5 with the α-Fe2PO5 structure,” J. Solid State Chem. JSSCBI 109, 5359. jss, JSSCBI Google Scholar
Rodriguez-Carvajal, J. (1990). “FULLPROF: A Program for Rietveld Refinement and Pattern Matching Analysis,” in Collected Abstracts of Powder Diffraction Meeting, Toulouse, France, p. 127.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 32, 751767. acf, ACACEQ Google Scholar