Hostname: page-component-78c5997874-g7gxr Total loading time: 0 Render date: 2024-11-15T05:21:21.216Z Has data issue: false hasContentIssue false

Synthesis and crystal structures of two novel triazolopyridine compounds solved by local L.S. minimizations from powder diffraction data

Published online by Cambridge University Press:  07 May 2014

Oriol Vallcorba*
Affiliation:
Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, 08193 Bellaterra, Catalunya, Spain
Rosa Adam
Affiliation:
Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Valencia, Avenida Vicente Andrés Estelles s/n, 46100 Burjassot, Valencia, Spain
Jordi Rius
Affiliation:
Institut de Ciència de Materials de Barcelona, CSIC, Campus de la UAB, 08193 Bellaterra, Catalunya, Spain
Rafael Ballesteros
Affiliation:
Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Valencia, Avenida Vicente Andrés Estelles s/n, 46100 Burjassot, Valencia, Spain
José M. Amigó
Affiliation:
Departamento de Geologia, Facultad de Biológicas, Universidad de Valencia, C/ Dr. Moliner s/n, 46960 Burjassot, Valencia, Spain
Belén Abarca
Affiliation:
Departamento de Química Orgánica, Facultad de Farmacia, Universidad de Valencia, Avenida Vicente Andrés Estelles s/n, 46100 Burjassot, Valencia, Spain
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The heteroaryl-substituted triazolopyridines 3-phenyl-7-(pyrazin-2-yl)-[1,2,3]triazolo[1,5-a]pyridine (2) and 3-[6-(pyridazin-3-yl)-pyridin-2-yl]-[1,2,3]triazolo[1,5-a]pyridine (4) have been synthesized and characterized (by HRMS, IR, 1H and 13C NMR, XRPD, melting point). The crystal structures have been solved from laboratory powder X-ray diffraction data with the direct-space strategy TALP for molecular compounds based on fast local least-squares minimizations. The crystal structure confirmed the formation of the tridentate compound 4 from a ring chain isomerization process. The almost planar arrangement of atoms in both the structures favors the presence of intermolecular ππ interactions, although weak C–H···N electrostatic interactions seem to be also important for the stabilization of the structure. Powder diffraction data have also proved to be sensible enough to determine the relative rotations of the six-membered rings despite the weak difference in scattering power between C and N atoms.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2014 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abarca, B., Ballesteros, R., and Elmasnaouy, M. (1998). “A facile route to new potential helicating ligands,” Tetrahedron 54, 1528715292.CrossRefGoogle Scholar
Abarca, B., Ballesteros, R., and Chadlaoui, M. (2004). “Triazolopyridines. Part 24: new polynitrogenated potential helicating ligands,” Tetrahedron 60, 57855792.CrossRefGoogle Scholar
Abarca, B., Alkorta, I., Ballesteros, R., Blanco, F., Chadlaoui, M., Elguero, J., and Mojarrad, F. (2005). “3-(2-Pyridyl)-[1,2,3]triazolo [1,5-a]pyridines. An experimental and theoretical (DFT) study of the ring–chain isomerization,” Org. Biomol. Chem. 3, 39053910.CrossRefGoogle Scholar
Abarca, B., Aucejo, R., Ballesteros, R., Blanco, F., and García-España, E. (2006). “Synthesis of novel fluorescent 3-aryl-and 3-methyl-7-aryl-[1,2,3]triazolo[1,5-a] pyridines by Suzuki cross-coupling reactions,” Tetrahedron Lett. 47, 81018103.CrossRefGoogle Scholar
Adam, R., Ballesteros-Garrido, R., Vallcorba, O., Abarca, B., Ballesteros, R., Leroux, F. R., Colobert, F., Amigó, J. M., and Rius, J. (2013). “Synthesis and structural properties of an hexaaza[5]helicene containing two [1,2,3]triazolo[1,5-a]pyridine moieties,” Tetrahedron Lett. 54, 43164319.CrossRefGoogle Scholar
Arcís-Castillo, Z., Piñeiro-López, L., Muñoz, M. C., Ballesteros, R., Abarca, B., and Real, J. A. (2013). “Structural, magnetic and calorimetric studies of a crystalline phase of the spin crossover compound [Fe(tzpy)2(NCSe)2],” CrystEngComm 15, 34553462.CrossRefGoogle Scholar
Ballesteros, R., Abarca, B., Samadi, A., Server-Carrió, J., and Escrivà, E. (1999). “Coordinating behaviour of 3-methyl[1,2,3]triazolo[1,5-a]pyridine (tzpy): crystal and molecular structure and electronic properties of [Cu(tzpy)2(ONO2)2(OH2)],” Polyhedron 18, 31293133.CrossRefGoogle Scholar
Ballesteros-Garrido, R., Abarca, B., Ballesteros, R., de Arellano, C. R., Leroux, F. R., Colobert, F., and García-España, E. (2009). “[1,2,3]Triazolo[1,5-a]pyridine derivatives as molecular chemosensors for zinc (II), nitrite and cyanide anions,” New J. Chem. 33, 21022106.CrossRefGoogle Scholar
Ballesteros-Garrido, R., Delgado-Pinar, E., Abarca, B., Ballesteros, R., Leroux, F. R., Colobert, F., Zaragozá, R. J., and García-España, E. (2012). “Triazolopyridines. Part 28. The ring–chain isomerization strategy: triazolopyridine- and triazoloquinoline–pyridine based fluorescence ligands,” Tetrahedron 68, 37013707.CrossRefGoogle Scholar
Battaglia, L. P., Carcelli, M., Ferraro, F., Mavilla, L., Pelizzi, C., and Pelizzi, G. (1994). A convenient method for the preparation of 3-(2-pyridyl) triazolo[1,5-a]pyridine (L). Crystal structures of L and [CuL2(OH2)2][NO3]2 ,” J. Chem. Soc., Dalton Trans. 1994, 26512654.CrossRefGoogle Scholar
Boultif, A. and Louër, D. (2004). “Powder pattern indexing with the dichotomy method,” J. Appl. Crystallogr. 37, 724731.CrossRefGoogle Scholar
Boyer, J. and Goebel, N. (1960). “The identification of C12H8N4O, an oxidation product from α-pyridil monohydrazone,” J. Org. Chem. 25, 304305.CrossRefGoogle Scholar
Cerný, R. and Favre-Nicolin, V. (2007). “Direct space methods of structure determination from powder diffraction: principles, guidelines and perspectives,” Z. Kristallogr. 222, 105113.CrossRefGoogle Scholar
Chadlaoui, M., Abarca, B., Ballesteros, R., Ramírez de Arellano, C., Aguilar, J., Aucejo, R., and García-España, E. (2006). “Properties of a triazolopyridine system as a molecular chemosensor for metal ions, anions, and amino acids,” J. Org. Chem. 71, 90309034.CrossRefGoogle ScholarPubMed
Jones, G. and Abarca, B. (2010). “The chemistry of the [1,2,3]triazolo[1,5-a]pyridines: an update,” Adv. Heterocycl. Chem. 100, 195252.CrossRefGoogle Scholar
Jones, G. and Sliskovic, D. R. (1980). “[1,2,3]Triazolo[1,5-a]pyridine-a synthon for 6-substituted pyridine-2-carboxaldehydes,” Tetrahedron Lett. 21, 45294530.CrossRefGoogle Scholar
Jones, G. and Sliskovic, D. R. (1982). “Triazolopyridines. Part 2. Preparation of 7-substituted triazolo[1,5-a]pyridines by directed lithiation,” J. Chem. Soc., Perkin Trans. 1, 967971.CrossRefGoogle Scholar
Jones, G., Mouat, D. J., and Tonkinson, D. J. (1985). “Triazolopyridines. Part 6. Ring opening reactions of triazolopyridines,” J. Chem. Soc., Perkin Trans. 1, 27192723.CrossRefGoogle Scholar
Jones, G., Pitman, M. A., Lunt, E., Lythgoe, D. J., Abarca, B., Ballesteros, R., and Elmasnaouy, M. (1997). “Triazolopyridines. 18. Nucleophilic substitution reactions on triazolopyridines; a new route to 2, 2′-bipyridines,” Tetrahedron 53, 82578268.CrossRefGoogle Scholar
Kress, T. J. (1979). “Direct metalation of pyrimidine. Synthesis of some 4-substituted pyrimidines,” J. Org. Chem. 44, 20812082.CrossRefGoogle Scholar
Mascal, M. (1998). “Statistical analysis of C–H···N hydrogen bonds in the solid state: there are real precedents,” Chem. Commun. 1998, 303304.CrossRefGoogle Scholar
Niel, V., Gaspar, A. B., Muñoz, M. C., Abarca, B., Ballesteros, R., and Real, J. A. (2003). “Spin crossover behavior in the iron (II)-2-pyridyl[1,2,3]triazolo[1,5-a]pyridine system: X-ray structure, calorimetric, magnetic, and photomagnetic studies,” Inorg. Chem. 42, 47824788.CrossRefGoogle Scholar
Ramírez de Arellano, C., Escrivà, E., Gómez-García, C. J., Mínguez Espallargas, G., Ballesteros, R., and Abarca, B. (2013). “Hydrogen bonding versus π-stacking in ferromagnetic interactions. Studies on a copper triazolopyridine complex,” CrystEngComm 15, 18361839.CrossRefGoogle Scholar
Rius, J. (2013). RIBOLS: Least-Squares Refinement from Powder Diffraction Data, version 1310 (Computer Software) (Institut de Ciència de Materials de Barcelona (ICMAB-CSIC), Barcelona, Spain).Google Scholar
Thalladi, V. R., Gehrke, A., and Boese, R. (2000). “C–H group acidity and the nature of C–H···N interactions: crystal structural analysis of pyrazine and methyl substituted pyrazines,” New J. Chem. 24, 463470.CrossRefGoogle Scholar
Vallcorba, O., Rius, J., Frontera, C., Peral, I., and Miravitlles, C. (2012a). “DAJUST: a suite of computer programs for pattern matching, space-group determination and intensity extraction from powder diffraction data,” J. Appl. Crystallogr. 45, 844848.CrossRefGoogle Scholar
Vallcorba, O., Rius, J., Frontera, C., and Miravitlles, C. (2012b). “TALP: a multisolution direct-space strategy for solving molecular crystals from powder diffraction data based on restrained least squares,” J. Appl. Crystallogr. 45, 12701277.CrossRefGoogle Scholar
Supplementary material: File

Vallcorba Supplementary Material

Table S1 and Table S2

Download Vallcorba Supplementary Material(File)
File 160.8 KB
Supplementary material: File

Vallcorba Supplementary Material

Supplementary Material

Download Vallcorba Supplementary Material(File)
File 6.1 KB
Supplementary material: File

Vallcorba Supplementary Material

Supplementary Material

Download Vallcorba Supplementary Material(File)
File 6.1 KB