Hostname: page-component-cd9895bd7-p9bg8 Total loading time: 0 Render date: 2024-12-26T09:02:16.142Z Has data issue: false hasContentIssue false

Synthesis and crystal structure refinement by the Rietveld method of antimony-bearing titanite Ca(Ti0.6Al0.2Sb0.2)OSiO4

Published online by Cambridge University Press:  29 February 2012

Fernando Colombo*
Affiliation:
Cátedra de Geología General, Facultad de Ciencias Exactas, Físicas y Naturales, Universidad Nacional de Córdoba, Vélez Sarsfield 1611, 5000 Córdoba, Argentina
Elisa V. Pannunzio Miner
Affiliation:
INFIQC-CONICET, Facultad de Ciencias Químicas, Universidad Nacional de Córdoba, Ciudad Universitaria s/n, 5000 Córdoba, Argentina
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

A synthetic analogue, Ca(Ti0.6Al0.2Sb0.2)OSiO4, of antimony-bearing titanite of a composition similar to that found at St. Marcel-Praborna (Italy) was synthesized using ceramic methods and the crystal structure was refined using the Rietveld method. Unit-cell dimensions (in Å) are a=7.0184(1), b=8.7097(2), c=6.5586(1), and β=113.700(1)°. The substitution of 40% Ti by (Al+Sb) in octahedra causes a loss of long-range coherency of the off-centered Ti atoms. The space group of Sb-bearing titanite is A2/a, like other cases of M3+-M5+-doped titanites. This study confirms that titanite with up to 0.2 Sb atom per f.u. can exist and that the substitution scheme is 2Ti4+↔Al3++Sb5+.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Angel, R. J., Kunz, M., Miletich, R., Woodland, A. B., Koch, R., and Xirouchakis, D. (1999). “High-pressure phase transition in CaTiOSiO4 titanite,” Phase Transitions PHTRDP 68, 533543. 10.1080/01411599908224532CrossRefGoogle Scholar
Bérar, J. -F. and Lelann, P. (1991). “E.S.D.’s and estimated probable error obtained in Rietveld refinements with local correlations,” J. Appl. Crystallogr. JACGAR 24, 15. 10.1107/S0021889890008391CrossRefGoogle Scholar
Bernau, R. and Franz, G. (1987). “Crystal chemistry and genesis of Nb-, V-, and Al-rich metamorphic titanite from Egypt and Greece,” Can. Mineral. CAMIA6 25, 695705.Google Scholar
Bismayer, D., Schmahl, W., Schmidt, C., and Groat, L. A. (1992). “Linear birefringence and X-ray diffraction studies of the structural phase transition in titanite, CaTiSiO5,” Phys. Chem. Miner. PCMIDU 19, 260266. 10.1007/BF00202317CrossRefGoogle Scholar
Bystroem, A. (1945). “Calcium pyroantimonates and similar compounds,” Ark. Kemi, Mineral. Geol. AKMGAE ,” 18, 8.Google Scholar
Černý, P., Novák, M., and Chapman, R. (1995). “The Al(Nb,Ta)Ti−2 substitution in titanite: The emergence of a new species?,” Mineral. Petrol. MIPEE9 52, 6173. 10.1007/BF01163126CrossRefGoogle Scholar
Chakhmouradian, A. R. (2004). “Crystal chemistry and paragenesis of compositionally unique (Al-, Fe-, Nb-, and Zr-rich) titanite from Afrikanda, Russia,” Am. Mineral. AMMIAY 89, 17521762.CrossRefGoogle Scholar
Clark, A. M. (1974). “A tantalum-rich variety of sphene,” Miner. Mag. MNLMBB 39, 605607. 10.1180/minmag.1974.039.305.16CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 1, 108113. 10.1107/S002188986800508XCrossRefGoogle Scholar
Della Ventura, G., Bellatreccia, F., and Williams, C. T. (1999). “Zr- and LREE-rich titanite from Tre Croci, Vico Volcanic complex (Latium, Italy),” Miner. Mag. MNLMBB 63, 123130.CrossRefGoogle Scholar
Dowty, E. (2006). ATOMS5.0: Shape software, Kingsport, Tennessee 37663, USA, http://shapesoftware.com/Google Scholar
Ellemann-Olesen, R. and Malcherek, T. (2005). “Temperature and composition dependence of structural phase transitions in Ca(TixZr1−x)OGeO4,” Am. Mineral. AMMIAY 90, 687694. 10.2138/am.2005.1767CrossRefGoogle Scholar
Enami, M., Suzuki, K., Liou, J. G. and Bird, D. K. (1993). “Al–Fe3+ and F-OH substitutions in titanite and constraints on their P-T dependence,” Eur. J. Mineral. EJMIER 5, 219231.CrossRefGoogle Scholar
Groat, L. A., Carter, R. T., Hawthorne, F. C., and Ercit, T. S. (1985). “Tantalian niobian titanite from the Irgon Claim, Southeastern Manitoba,” Can. Mineral. CAMIA6 23, 569571.Google Scholar
Hawthorne, F. C., Groat, L. A., Raudsepp, M., Ball, N. A., Kimata, M., Spike, F. D., Gaba, R., Halden, N. M., Lumpkin, G. R., Ewing, R. C., Greegor, R. B., Lytle, F. W., Ercit, T. S., Rossman, G. R., Wicks, F. J., Ramik, R. A., Sherriff, B. L., Fleet, M. E., and McCammon, C. (1991). “Alpha-decay damage in titanite,” Am. Mineral. AMMIAY 76, 370396.Google Scholar
Higgins, J. B. and Ribbe, P. H. (1976). “The crystal chemistry and space groups of natural and synthetic titanites,” Am. Mineral. AMMIAY 61, 878888.Google Scholar
Hollabaugh, C. L. and Foit, F. F. Jr. (1984). “The crystal structure of an Al-rich titanite from Grisons, Switzerland,” Am. Mineral. AMMIAY 69, 725732.Google Scholar
Hughes, J. M., Bloodaxe, E. S., Hanchar, J. M., and Foord, E. E. (1997). “Incorporation of rare earth elements in titanite: Stabilization of the A2/a dimorph by creation of antiphase boundaries,” Am. Mineral. AMMIAY 82, 512516.CrossRefGoogle Scholar
Kek, S., Aroyo, M., Bismayer, U., Schmidt, C., Eichhorn, K., and Krane, H. G. (1997). “The two-step phase transition of titanite, CaTiSiO5: A synchrotron radiation study,” Z. Kristallogr. ZEKRDZ 212, 919.CrossRefGoogle Scholar
Knoche, R., Angel, R. J., Seifert, F., and Fliervoet, T. F. (1998). “Complete substitution of Si for Ti in titanite Ca(Ti1−xSix)IVSiIVO5,” Am. Mineral. AMMIAY 83, 11681175.CrossRefGoogle Scholar
Kunz, M. and Brown, I. D. (1995). “Out-of-center distortions around octahedrally coordinated d 0 transition metals,” J. Solid State Chem. JSSCBI 115, 395406. 10.1006/jssc.1995.1150CrossRefGoogle Scholar
Kunz, M., Xirouchakis, D., Lindsley, D. H., and Häusermann, D. (1996). “High-pressure phase transition in titanite (CaTiOSiO4),” Am. Mineral. AMMIAY 81, 15271530.CrossRefGoogle Scholar
Liferovich, R. P. and Mitchell, R. H. (2005). “Composition and paragenesis of Na-, Nb- and Zr-bearing titanite from Khibina, Russia, and crystal-structure data for synthetic analogues,” Can. Mineral. CAMIA6 43, 795812. 10.2113/gscanmin.43.2.795CrossRefGoogle Scholar
Liferovich, R. P. and Mitchell, R. H. (2006a). “Solid solutions of niobium in synthetic titanite,” Can. Mineral. CAMIA6 44, 10891097. 10.2113/gscanmin.44.5.1089CrossRefGoogle Scholar
Liferovich, R. P. and Mitchell, R. H. (2006b). “Crystal structure of a synthetic aluminoan tantalian titanite: A reconnaissance study,” Miner. Mag. MNLMBB 70, 115121. 10.1180/0026461067010317CrossRefGoogle Scholar
Liferovich, R. P. and Mitchell, R. H. (2006c). “Tantalum-bearing titanite: Synthesis and crystal structure data,” Phys. Chem. Miner. PCMIDU 33, 7383. 10.1007/s00269-006-0069-yCrossRefGoogle Scholar
Oberti, R., Smith, D. C., Rossi, G., and Caucia, F. (1991). “The crystal-chemistry of high-aluminium titanites,” Eur. J. Mineral. EJMIER 3, 777792.CrossRefGoogle Scholar
Paul, B. J., Černý, P., Chapman, R., and Hinthorne, J. R. (1981). “Niobian titanite from the Huron claim pegmatite, Southeastern Manitoba,” Can. Mineral. CAMIA6 19, 549552.Google Scholar
Perseil, E. -A. and Smith, D. C. (1995). “Sb-rich titanite in the manganese concentrations at St. Marcel-Praborna, Aosta Valley, Italy: Petrography and crystal-chemistry,” Miner. Mag. MNLMBB 59, 717734. 10.1180/minmag.1995.059.397.13CrossRefGoogle Scholar
Rachinger, W. A. (1948). “A correction for the α1: α2 doublet in the measurement of widths of X-ray diffraction lines,” J. Sci. Instrum. JSINAY 25, 254259. 10.1088/0950-7671/25/7/125CrossRefGoogle Scholar
Rath, S., Kunz, M., and Miletich, R. (2001). “Phase transition mechanisms in the mineral titanite CaTiOSiO4 under high pressure—a X-ray single crystal study between 7 GPa and 10 GPa,” American Geophysical Union, Fall Meeting (unpublished), Abstract No. P21B-0529.Google Scholar
Robinson, K., Gibbs, G. V., and Ribbe, P. H. (1971). “Quadratic elongation: A quantitative measure of distortion in coordination polyhedra,” Science SCIEAS 172, 567570. 10.1126/science.172.3983.567CrossRefGoogle ScholarPubMed
Roisnel, T. and Rodríguez-Carvajal, J. (2007). FULLPROF: Free access software for processing of X-ray diffraction data, http://www.cdifx.uni-rennes1.fr/winplotr/winplotr.htmGoogle Scholar
Russell, J. K., Groat, L. A., and Halleran, A. A. D. (1994). “LREE-rich niobian titanite from Mount Bisson, British Columbia: Chemistry and exchange mechanisms,” Can. Mineral. CAMIA6 32, 575587.Google Scholar
Salje, E. K. H., Zhang, M., and Groat, L. A. (2000). “Dehydration and recrystallization of radiation-damaged titanite under thermal annealing,” Phase Transitions PHTRDP 71, 173187. 10.1080/01411590008229650CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN 32, 751767. 10.1107/S0567739476001551CrossRefGoogle Scholar
Smith, D. C. and Perseil, E. -A. (1997). “Sb-rich rutile in the manganese concentrations at St. Marcel-Praborna, Aosta Valley, Italy: Petrology and crystal-chemistry,” Miner. Mag. MNLMBB 61, 655669. 10.1180/minmag.1997.061.408.04CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 12, 6065. 10.1107/S002188987901178XCrossRefGoogle Scholar
Spears, J. A. and Gibbs, G. V. (1976). “The crystal structure of synthetic titanite, CaTiOSiO4, and the domain textures of natural titanites,” Am. Mineral. AMMIAY 61, 238247.Google Scholar
Taylor, M. and Brown, G. E. (1976). “High-temperature structural study of the P21/aA2/a phase transition in synthetic titanite, CaTiSiO5,” Am. Mineral. AMMIAY 61, 435447.Google Scholar
Yamanaka, T. and Mori, H. (1981). “The structure and polytypes of alpha-CaSiO3 (pseudowollastonite),” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR 37, 10101017. 10.1107/S0567740881004962CrossRefGoogle Scholar
Zhang, M., Meyer, H. -W., Groat, L. A., Bismayer, U., Salje, E., and Adiwidjaja, G. (1999). “An infrared spectroscopic and single-crystal X-ray study of malayaite, CaSnTiO5,” Phys. Chem. Miner. PCMIDU 26, 546553. 10.1007/s002690050218CrossRefGoogle Scholar
Zhang, M., Salje, E., and Bismayer, U. (1997). “Structural phase transition near 825 K in titanite: Evidence from infrared spectroscopic observations,” Am. Mineral. AMMIAY 82, 3035.CrossRefGoogle Scholar
Zhang, M., Salje, E., Bismayer, U., Unruh, H. -G., Wruck, B., and Schmidt, C. (1995). “Phase transition(s) in titanite CaTiSiO: An infrared spectroscopic, dielectric response and heat capacity study,” Phys. Chem. Miner. PCMIDU 22, 4149. 10.1007/BF00202679CrossRefGoogle Scholar
Zhang, M., Salje, E., Malcherek, T., Bismayer, U., and Groat, L. A. (2000). “Dehydration of metamict titanite: An infrared spectroscopy study,” Can. Mineral. CAMIA6 38, 119130. 10.2113/gscanmin.38.1.119CrossRefGoogle Scholar