Hostname: page-component-745bb68f8f-grxwn Total loading time: 0 Render date: 2025-01-11T22:47:54.745Z Has data issue: false hasContentIssue false

A synchrotron X-ray diffraction study of a small congruent LiNbO3 crystal: A compatible approach to powder diffraction

Published online by Cambridge University Press:  05 March 2012

Barbara Etschmann*
Affiliation:
Materials & Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
Nobuo Ishizawa
Affiliation:
Materials & Structures Laboratory, Tokyo Institute of Technology, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan
*
a)Electronic mail: [email protected]

Abstract

Single-crystal synchrotron X-ray diffraction (XRD) data were collected and refined for congruent lithium niobate crystals 8 and 6 μm in diameter, sizes that are comparable to the size of the powder particles used in powder diffraction. The motivation for using such small crystals is to minimize problems such as extinction, which decrease with crystal size. The R/wR factors were 0.011/0.014 and 0.019/0.018, for the 8 and 6 μm data, respectively, and the goodness of fit factors were 2.3(1) and 1.63(8), which compare favorably with values obtained from previous powder and single-crystal diffraction studies. Results from single-crystal XRD using crystals less than 10 μm in size may rival those obtained from powder diffraction.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abrahams, S. C., and Marsh, P. (1986). “Defect structure dependence on composition in lithium niobate,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK B42, 6168. acl, ASBSDK CrossRefGoogle Scholar
Abrahams, S. C., Reddy, J. M., and Bernstein, J. L. (1966). “Ferroelectric lithium niobate. 3. Single crystal X-ray diffraction study at 24 °C,” J. Phys. Chem. Solids JPCSAW 27, 9971012. jpx, JPCSAW CrossRefGoogle Scholar
Becker, P. J.and Coppens, P. (1974). “Extinction within the limit of validity of the Darwin transfer equations. I. General formulisms for primary and secondary extinction and their application to spherical crystals,” Acta crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN A30, 129147. aca, ACACBN CrossRefGoogle Scholar
Carruthers, J. R., Peterson, G. E., Grasso, M., and Bridenbaugh, P. M. (1971). “Nonstoichiometry and crystal growth of lithium niobate,” J. Appl. Phys. JAPIAU 42, 18461851. jap, JAPIAU CrossRefGoogle Scholar
Cox, D. E. (1992). “High-resolution powder diffraction and structure determination,” in Synchrotron Radiation Crystallography by P. Coppens (Academic, London), pp. 186–190.Google Scholar
Fay, H., Alford, W. J., and Dess, H. M. (1968). “Dependence of second-harmonic phase-matching temperature in LiNbO3 crystals on melt composition,” Appl. Phys. Lett. APPLAB 12, 8992. apl, APPLAB CrossRefGoogle Scholar
Hall, S. R., King, G. S. D., and Stewart, J. M. (1995). Eds. XTAL3.4 User’s Manual (University of Western Australia, Lamb, Perth).Google Scholar
Harding, M. M. (1996). “Structure determination from very small crystals,” Mater. Sci. Forum MSFOEP 228–231, 310. msf, MSFOEP CrossRefGoogle Scholar
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chim. Acta TCHAAM 44, 129138. tch, TCHAAM CrossRefGoogle Scholar
Hsu, R., Maslen, E. N., du Boulay, D., and Ishizawa, N. (1997). “Synchrotron X-ray studies of LiNbO3 and LiTaO3,Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK B53, 420428. acl, ASBSDK CrossRefGoogle Scholar
Iyi, N., Kitamura, K., Izumi, F., Yamamoto, J. K., Hayashi, T., Asano, H., and Kimura, S. (1992). “Comparative study of defect structures in lithium niobate with different compositions,” J. Solid State Chem. JSSCBI 101, 340352. jss, JSSCBI CrossRefGoogle Scholar
Kishimoto, S. (1995). “Recent developments in the avalanche photodiode X-ray detector for timing and fast counting measurements,” Rev. Sci. Instrum. RSINAK 66, 23142316. rsi, RSINAK CrossRefGoogle Scholar
Kishimoto, S., Ishizawa, N., and Vaalsta, T. P. (1998). “A fast detector using stacked avalanche photodiodes for X-ray diffraction experiments with synchrotron radiation,” Rev. Sci. Instrum. RSINAK 69, 384391. rsi, RSINAK CrossRefGoogle Scholar
Lawrence, J. L. (1977). “A critique of Zachariasen’s theory of extinction,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN A33, 232234. aca, ACACBN CrossRefGoogle Scholar
Lee, P., Graafsma, H., Gao, Y., Sheu, H., Coppens, P., Golden, S. J., and Lange, F. F. (1991). “Modulated structure of an 800 Å epitactic film of the superconductor Bi2Sr2CaCu2O8 as studied by synchrotron radiation,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ A47, 5759. acf, ACACEQ CrossRefGoogle Scholar
Lerner, P., Legras, C., and Dumas, J. P. (1968). “Stoechiométrie des monocristaux de métaniobate de lithium,” J. Cryst. Growth JCRGAE 3,4, 231235. jcr, JCRGAE CrossRefGoogle Scholar
Louër, D. (1998). “Advances in powder diffraction analysis,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ A54, 922933. acf, ACACEQ CrossRefGoogle Scholar
Maslen, E. N., Streltsov, V. A., and Ishizawa, N. (1996). “A synchrotron X-ray study of the electron density in C-type rare earth oxides,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK B52, 414422. acl, ASBSDK CrossRefGoogle Scholar
Neder, R. B., Burghammer, M., Grasl, Th., and Schulz, H. (1996a). “Mounting an individual submicrometer sized single crystal,” Z. Kristallogr. ZEKRDZ 211, 365367. zek, ZEKRDZ CrossRefGoogle Scholar
Neder, R. B., Burghammer, M., Grasl, Th., Schulz, H., Bram, A., Fiedler, S., and Riekel, Ch. (1996b). “Single crystal diffraction by submicrometer sized kaolinite; observation of Bragg reflections and diffuse scattering,” Z. Kristallogr. ZEKRDZ 211, 763765. zek, ZEKRDZ CrossRefGoogle Scholar
Ohgaki, M., Tanaka, K., and Marumo, F. (1992). “Structure refinement of lithium (I) niobium (V) trioxide, LiNbO3, with anharmonic thermal vibration model,” Mineral. J. MJTOAS 16, 150160. mjt, MJTOAS CrossRefGoogle Scholar
Ohsumi, K., Hagiya, K., and Ohmasa, M. (1991). “Development of a system to analyse the structure of a submicrometre-sized single crystal by synchrotron X-ray diffraction,” J. Appl. Crystallogr. JACGAR 24, 340348. acr, JACGAR CrossRefGoogle Scholar
O’Bryan, H. M., Gallagher, P. K. and Brandle, C. D. (1985). “Congruent composition and Li-rich phase boundary of LiNbO3,” J. Am. Ceram. Soc. JACTAW 68, 493496.CrossRefGoogle Scholar
Pattison, P., Knudsen, K. D., and Fitch, A. N. (2000). “Accuracy of molecular structures determined from high-resolution powder diffraction. The example of m-fluorobenzoic acid,” J. Appl. Crystallogr. JACGAR 33, 8286. acr, JACGAR CrossRefGoogle Scholar
Peterson, G. E., and Carnevale, A. (1972). “93Nb NMR linewidths in non-stoichiometric lithium niobate,” J. Chem. Phys. JCPSA6 56, 48484851. jcp, JCPSA6 CrossRefGoogle Scholar
Prokhorov, A. M., and Kuz’minov, Yu., S. (1990). Physics and Chemistry of Crystalline Lithium Niobate (IOP, Bristol).Google Scholar
Rieck, W., Euler, H., Schulz, H., and Schildkamp, W. (1988). “Synchrotron X-ray diffraction on a CaF2 microcrystal with 2.2 cubic micrometers volume,” Acta Crystallogr., Sect. A: Found. Crystallogr. ACACEQ 44, 10991101. acf, ACACEQ CrossRefGoogle Scholar
Safaryan, F. P., Feigelson, R. S., and Petrosyan, A. M. (1999). “An approach to the defect structure analysis of lithium niobate single crystals,” J. Appl. Phys. JAPIAU 85, 80798082. jap, JAPIAU CrossRefGoogle Scholar
Sasaki, S. (1989). “KEK Report 88-14: Numerical tables of anomalous scattering factors calculated by the Cromer and Liberman’s method,” PF, KEK, Tsukuba, Japan.Google Scholar
Sasaki, S. (1990). “KEK Report 90-16: X-ray absorption coefficients of the elements (Li to Bi, U),” PF, KEK, Tsukuba, Japan.Google Scholar
Satow, Y., and Iitaka, Y. (1989). “Horizontal-type four-circle diffractometer station of the vertical wiggler beamline at the Photon Factory,” Rev. Sci. Instrum. RSINAK 60, 23902393. rsi, RSINAK CrossRefGoogle Scholar
Streltsov, V. A., and Ishizawa, N. (1999a). “Synchrotron X-ray study of the electron density in RFeO3 (R=Nd, Dy),Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 55, 17. acl, ASBSDK CrossRefGoogle ScholarPubMed
Streltsov, V. A., and Ishizawa, N. (1999b). “Synchrotron X-ray analysis of the electron density in HoFe2,Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK B55, 321326. acl, ASBSDK CrossRefGoogle Scholar
Streltsov, V. A., Ishizawa, N., and Kishimoto, S. (1998). “Synchrotron X-ray imaging of the electron density RFeO3 (R=Y, Ho) using an APD detector,” J. Synchrotron Radiat. JSYRES S5, 13091316. jsy, JSYRES CrossRefGoogle Scholar
Streltsov, V. A., Nordborg (née Almgren), J., and Albertsson, J. (2000). “Synchrotron X-ray Analysis of RbTiOAsO4,” Acta Crystallogr., Sect. B: Struct. Sci. (in press).Google Scholar
Tibballs, J. E. (1982). “The rapid computation of mean path lengths for spheres and cylinders,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN A38, 161163. aca, ACACBN CrossRefGoogle Scholar
Wilkinson, A. P., Cheetham, A. K., and Jarman, R. H. (1993). “The defect structure of congruently melting lithium niobate,” J. Appl. Phys. JAPIAU 74, 30803083. jap, JAPIAU CrossRefGoogle Scholar
Yatsenko, A., Maksimova, H., and Sergeev, N. (1999). “NMR study of intrinsic defects in congruent lithium niobate,” Cryst. Res. Technol. CRTEDF 34, 709713. crt, CRTEDF 3.0.CO;2-X>CrossRefGoogle Scholar
Zachariasen, W. H. (1967). “A general theory of X-ray diffraction in crystals,” Acta Crystallogr. ACCRA9 23, 558564. acc, ACCRA9 CrossRefGoogle Scholar
Zotov, N., Boysen, H., Frey, F., Metzger, T., and Born, E. (1994). “Cation substitution models of congruent LiNbO3 investigated by X-ray and neutron powder diffraction,” J. Phys. Chem. Solids JPCSAW 55, 145152. jpx, JPCSAW CrossRefGoogle Scholar