Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-06T04:08:12.809Z Has data issue: false hasContentIssue false

A study of nanocrystalline yttrium oxide from diffraction-line-profile analysis: comparison of methods and crystallite growth

Published online by Cambridge University Press:  06 March 2012

D. Louër
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR CNRS 6511), Institut de Chimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes Cedex, France
T. Bataille
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR CNRS 6511), Institut de Chimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes Cedex, France
T. Roisnel
Affiliation:
Laboratoire de Chimie du Solide et Inorganique Moléculaire (UMR CNRS 6511), Institut de Chimie, Université de Rennes, Avenue du Général Leclerc, 35042 Rennes Cedex, France
J. Rodriguez-Carvajal
Affiliation:
Laboratoire Léon Brillouin (CEA-CNRS), CEA/Saclay, 91191 Gif sur Yvette cedex, France and Service de Physique Statistique, Magnétisme et Supraconductivité, CEA/Grenoble, 38054 Grenoble Cedex 9, France

Abstract

An analysis of the microstructure of nanocrystalline yttrium oxide produced by thermal decomposition of a double oxalate yttrium and ammonium, at temperatures in the range 600 °C to 900 °C, is described. The study is based on line broadening analysis carried out with the (Voigt/Langford) integral breadth and Fourier methods combined with the pattern decomposition technique. Due to the line overlap arising from the density of diffraction lines, the whole pattern refinement method (pattern matching and Rietveld approaches) is also applied. No marked line broadening anisotropy is observed in the patterns. It is shown that for the two samples prepared at the highest temperatures the results are similar whatever the method used and the material can be considered as strain free. For the two lowest temperatures only the whole pattern refinement method is applied. The results suggest that a small amount of lattice microdistortion is present in these two last samples. It is shown that the crystallite growth varies exponentially with temperature. The results obtained from line broadening analysis are compared to those observed with scanning electron microscopy, from which a good accordance is noted between the two techniques.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Audebrand, N., Auffrédic, J.-P.and Louër, D. (1998). “X-ray diffraction study of the early stages of the growth of nanoscale zinc oxide crystallites obtained from thermal decomposition of four precursors. General concepts on precursor-dependent microstructural properties,” Chem. Mater. CMATEX 10, 24502461. cma, CMATEX CrossRefGoogle Scholar
Audebrand, N., Auffrédic, J.-P., and Louër, D. (2000). “An X-ray powder diffraction study of the microstructure and growth kinetics of nanoscale crystallites obtained from hydrated cerium oxides,” Chem. Mater. CMATEX 12, 17911799. cma, CMATEX CrossRefGoogle Scholar
Balzar, D.and Popovic, S. (1996). “Reliability of the simplified integral-breadth methods in diffraction line-broadening analysis,” J. Appl. Crystallogr. JACGAR 29, 1623. acr, JACGAR CrossRefGoogle Scholar
Barrett, M. F., McDonald, T. R. R., and Topp, N. E. (1964). “Double ammonium oxalates of the rare earths and yttrium,” J. Inorg. Nucl. Chem. JINCAO 26, 931936. jin, JINCAO CrossRefGoogle Scholar
Bataille, T., Auffrédic, J.-P., and Louër, D. (2000). “Crystal structure and thermal behaviour of the new layered oxalate Y(H2O)Cs(C2O4)2 studied by powder X-ray diffraction,” J. Mater. Chem. JMACEP 10, 17071711. jtc, JMACEP CrossRefGoogle Scholar
Bertaut, E. F. (1950). “Raies de Debye-Scherrer et répartition des dimensions des domaines de Bragg dans les poudres polycristallines,” Acta Crystallogr. ACCRA9 3, 1418. acc, ACCRA9 CrossRefGoogle Scholar
de Keijser, Th. H., Langford, J. I., Mittemeijer, E. J., and Vogels, A. B. P. (1982). “Use of the Voigt function in a single-line method for the analysis of X-ray diffraction line broadening,” J. Appl. Crystallogr. JACGAR 15, 308314. acr, JACGAR CrossRefGoogle Scholar
Delhez, R., de Keijser, Th. H., Langford, J. I., Louër, D., Mittemeijer, E. J. and Sonneveld, E. J. (1993). “Crystal imperfection broadening and peak shape in the Rietveld method,” in The Rietveld Method, edited by R. A. Young (IUCr/OUP, Oxford), Chap. 8, pp. 132–166.Google Scholar
Guillou, N., Auffrédic, J. P., and Louër, D. (1995). “The early stages of crystallite growth of CeO2 obtained from a cerium oxide nitrate,” Powder Diffr. PODIE2 10, 236240. pdj, PODIE2 CrossRefGoogle Scholar
Guillou, N., Nistor, L. C., Fuess, H., and Hahn, H. (1997). “Microstructural studies of nanocrystalline CeO2 produced by gas condensation,” Nanostruct. Mater. NMAEE7 8, 545557. nsm, NMAEE7 CrossRefGoogle Scholar
Halder, N. C.and Wagner, C. N. J. (1966). “Separation of particle size and lattice strain in integral breadth measurements,” Acta Crystallogr. ACCRA9 20, 312313. acc, ACCRA9 CrossRefGoogle Scholar
Langford, J. I. (1978). “A rapid method for analyzing the breadths of diffraction and spectral lines using the Voigt function,” J. Appl. Crystallogr. JACGAR 11, 1014. acr, JACGAR CrossRefGoogle Scholar
Langford, J. I. (1992). “The use of the Voigt function in determining microstructural properties from diffraction data by means of pattern decomposition,” in Accuracy in Powder Diffraction II, edited by E. Prince and J. K. Stalick, Spec. Publ. 846 (NIST, Gaithersburg, MD), pp. 110–126.Google Scholar
Langford, J. I., Boultif, A., Auffrédic, J. P., and Louër, D. (1993). “The use of pattern decomposition to study the combined X-ray diffraction effects of crystal size and stacking-faults in ex-oxalate zinc oxide,” J. Appl. Crystallogr. JACGAR 26, 2233. acr, JACGAR CrossRefGoogle Scholar
Langford, J. I., Delhez, R., de Keijser, Th. H., and Mittemeijer, E. J. (1988). “Profile analysis for microcrystalline properties by the Fourier and other methods,” Aust. J. Phys. AUJPAS 41, 173187. auj, AUJPAS CrossRefGoogle Scholar
Le Bail, A.and Jouanneaux, A. (1997). “A qualitative account for anisotropic broadening in whole-powder-diffraction-pattern fitting by second-rank tensors,” J. Appl. Crystallogr. JACGAR 30, 265271. acr, JACGAR CrossRefGoogle Scholar
Louër, D., (1994). “Applications of profile analysis for micro-crystalline properties from total pattern fitting,” Adv. X-Ray Anal. AXRAAA 37, 2735. axr, AXRAAA Google Scholar
Louër, D. (1999). “Use of pattern decomposition to study microstructure: practical aspects and applications,” in Defect and Microstructure Analysis by Diffraction, edited by R. L. Snyder, J. Fiala, and H. J. Bunge (IUCr/OUP, Oxford), Chap. 28, pp. 673–697.Google Scholar
Louër, D.and Audebrand, N. (1999). “Profile fitting and diffraction line-broadening analysis,” Adv. X-Ray Anal. AXRAAA 41, 556565. axr, AXRAAA Google Scholar
Louër, D. and Audebrand, N. (2001). “The microstructure of nanocrystalline powders by combining fitting techniques and diffraction-line-broadening analysis,” in Applied Crystallography, edited by H. Morawiec and D. Stróz (World Scientific, Singapore), pp. 3–12.Google Scholar
Louër, D., Auffrédic, J. P., Langford, J. I., Ciosmak, D., and Niepce, J. C. (1983). “A precise determination of the shape, size and distribution of size of crystallites in zinc oxide by X-ray line broadening analysis,” J. Appl. Crystallogr. JACGAR 16, 183191. acr, JACGAR CrossRefGoogle Scholar
Louër, D.and Langford, J. I. (1988). “Peak shape and resolution in conventional diffractometry with monochromatic X-rays,” J. Appl. Crystallogr. JACGAR 21, 430437. acr, JACGAR CrossRefGoogle Scholar
Louër, D., Vargas, R., and Auffrédic, J.-P. (1984). “Morphological analysis and growth of crystallites during the annealing of ZnO,” J. Am. Ceram. Soc. JACTAW 67, 136141. jac, JACTAW CrossRefGoogle Scholar
McDonald, T. R. R.and Spink, J. M. (1967). “The crystal structure of a double oxalate yttrium and ammonium, NH4Y(C2O4)2.H2O,Acta Crystallogr. ACCRA9 23, 944949. acc, ACCRA9 CrossRefGoogle Scholar
Nelson, J. A.and Wagner, M. J. (2002). “Yttrium oxide nanoparticles prepared by alkalide reduction,” Chem. Mater. CMATEX 14, 915917. cma, CMATEX CrossRefGoogle Scholar
Pelloquin, D., Louër, M., and Louër, D. (1994). “Powder diffraction studies in the YONO3–Y2O3 system,” J. Solid State Chem. JSSCBI 112, 182188. jss, JSSCBI CrossRefGoogle Scholar
Plévert, J.and Louër, D. (1990). “Formes des pics de diffraction des rayons X par des solides à cristallisation fine,” J. Chim. Phys. Phys.-Chim. Biol. JCPBAN 87, 14271440. jbl, JCPBAN CrossRefGoogle Scholar
Popa, N. C. (1998). “The (hkl) dependence of diffraction-line broadening caused by strain and size for all Laue groups in Rietveld refinement,” J. Appl. Crystallogr. JACGAR 31, 176180. acr, JACGAR CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). “FULLPROF: a program for Rietveld refinement and pattern matching analysis,” Abstracts of the meeting Powder Diffraction, Toulouse, France, 127–128. (FULLPROF is available at http://www-llb.cea.fr/fullweb/powder.htm).Google Scholar
Rodriguez-Carvajal, J. (2001). “Recent developments of the program FULLPROF,” IUCr-CPD NewsLetter 26, December 2001, pp. 12–19.Google Scholar
Rodriguez-Carvajal, J., Fernandez-Diaz, M. T., and Martinez, J. L. (1991). “Neutron diffraction study on structural and magnetic properties of La2NiO4,J. Phys.: Condens. Matter JCOMEL 3, 32153234. jcz, JCOMEL Google Scholar
Rodriguez-Carvajal, J. and Roisnel, T. (2002). “Line broadening analysis using FULLPROF: determination of microstructural properties,” EPDIC-8 Conference, Uppsala.Google Scholar
Roisnel, T.and Rodriguez-Carvajal, J. (2001). “WinPLOTR: a windows tool for powder diffraction pattern analysis,” Mater. Sci. Forum MSFOEP 378–381, 118123. msf, MSFOEP CrossRefGoogle Scholar
Stephens, P. W. (1999). “Phenomenological model of anisotropic peak broadening in powder diffraction,” J. Appl. Crystallogr. JACGAR 32, 281289. acr, JACGAR CrossRefGoogle Scholar
Stokes, A. R.and Wilson, A. J. C. (1944). “The diffraction of X-rays by distorted crystal aggregates-I,” Proc. Phys. Soc. London PPSOAU 56, 174181. pps, PPSOAU CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from Al2O3,J. Appl. Crystallogr. JACGAR 20, 7983. acr, JACGAR CrossRefGoogle Scholar
Ungár, T., Dragomir-Cernatescu, I., Louër, D., and Audebrand, N. (2001). “Dislocations and crystallite size distribution in nanocrystalline CeO2 obtained from an ammonium cerium(IV)-nitrate solution,” J. Phys. Chem. Solids JPCSAW 62, 19351941. jpx, JPCSAW CrossRefGoogle Scholar
Wagner, C. N. J.and Aqua, E. N. (1964). “Analysis of the broadening of powder pattern peaks from cold-worked face-centered and body-centered cubic metals,” Adv. X-Ray Anal. AXRAAA 7, 4665. axr, AXRAAA Google Scholar
Warren, B. E.and Averbach, B. L. (1950). “The effect of cold-work distortion on X-ray patterns,” J. Appl. Phys. JAPIAU 21, 595599. jap, JAPIAU CrossRefGoogle Scholar
Warren, B. E.and Averbach, B. L. (1952). “The separation of cold-work distortion and particle size broadening in X-ray patterns,” J. Appl. Phys. JAPIAU 23, 497. jap, JAPIAU CrossRefGoogle Scholar
Wilson, A. J. C. (1962). X-ray Optics, 2nd ed. (Methuen, London).Google Scholar
Young, R. A. (1993). “Introduction to the Rietveld method,” in The Rietveld Method, edited by R. A. Young (IUCr/OUP, Oxford), Chap. 1, pp. 1–38.Google Scholar
Young, R. A.and Desai, P. (1989). “Crystallite size and microstrain indicators in Rietveld refinement,” Arch. Nauk Mater. ZZZZZZ 10, 7190.Google Scholar
Young, R. A., Gerdes, R. G., and Wilson, A. J. C. (1967). “Propagation of some systematic errors in X-ray line profile analysis,” Acta Crystallogr. ACCRA9 22, 155162. acc, ACCRA9 CrossRefGoogle Scholar