Hostname: page-component-586b7cd67f-g8jcs Total loading time: 0 Render date: 2024-11-27T21:38:32.836Z Has data issue: false hasContentIssue false

Study of CoxPt1−x nanoalloy formation mechanism via single-source precursors

Published online by Cambridge University Press:  14 May 2019

E. Yu. Filatov*
Affiliation:
Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russian Federation Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentyev Ave. 3, 630090 Novosibirsk, Russian Federation
A. V. Zadesenets
Affiliation:
Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russian Federation Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentyev Ave. 3, 630090 Novosibirsk, Russian Federation
S. V. Komogortsev
Affiliation:
Kirensky Institute of Physics, Federal Research Center KSC SB RAS, Akademgorodok 50, bld. 38, 660036 Krasnoyarsk, Russian Federation
P. E. Plyusnin
Affiliation:
Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russian Federation Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentyev Ave. 3, 630090 Novosibirsk, Russian Federation
A. A. Chepurov
Affiliation:
Sobolev Institute of Geology and Mineralogy SB RAS, Koptyuga Ave.3, 630090 Novosibirsk, Russian Federation
S. V. Korenev
Affiliation:
Novosibirsk State University, Pirogova str. 2, 630090 Novosibirsk, Russian Federation Nikolaev Institute of Inorganic Chemistry SB RAS, Lavrentyev Ave. 3, 630090 Novosibirsk, Russian Federation
*
a)Author to whom correspondence should be addressed. E-mail: [email protected]

Abstract

This paper is devoted to the study of formation mechanism of metal solid solutions during the thermolysis of single-source precursors in Co–Pt systems with a wide range of superstructural ordering. It is shown that the thermal decomposition of [Pt(NH3)4][Co(C2O4)2(H2O)2]·2H2O salt in helium is critically different from that under hydrogen atmospheres. Thermal degradation under the helium atmosphere is followed by a gradual reduction of platinum and cobalt, and at each thermolysis temperature only one phase is present. At 380 °C an equiatomic Co0.50Pt0.50 solid solution is formed (a = 3.749 (4) Å, Fm−3m space group, V/Z = 13.17 Å3, crystallite size: 5–7 nm). When the precursor is decomposed under a hydrogen atmosphere, the process proceeds mainly through the simultaneous reduction of the platinum and cobalt atoms, and at each temperature section two metal phases are present. The formation of the close to equiatomic Co0.50Pt0.50 solid solution (a = 3.782 (4) Å, Fm−3m space group, V/Z = 13.52 Å3, crystallite size: 7–9 nm) occurs at 450 °C. The calculations of crystallite sizes are confirmed by transmission electron microscopy data.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Asanova, T., Asanov, I., Zadesenets, A., Filatov, E., Plyusnin, P., Gerasimov, E., and Korenev, S. (2016). “Study on thermal decomposition of double complex salt [Pd(NH3)4][PtCl6],” J. Therm. Anal. Calorim. 123(2), 11831195.Google Scholar
Aulchenko, V. M., Evdokov, O. V., Kutovenko, V. D., Pirogov, B. Ya., Sharafutdinov, M. R., Titov, V. M., Tolochko, B. P., Vasiljev, A. V., Zhogin, I. L., and Zhulanov, V. V. (2009). “One-coordinate X-ray detector OD–3M,” Nucl. Instrum. Methods Phys. Res., Sect. A. 603, 7679.Google Scholar
Barry, M. C., Wei, Z., He, T., Filatov, A. S., and Dikarev, E. V. (2016). “Volatile single-source precursors for the low-temperature preparation of sodium-rare earth metal fluorides,” J. Am. Chem. Soc. 138(28), 88838887.Google Scholar
Chepurov, A. I., Sonin, V. M., Chepurov, A. A., Zhimulev, E. I., Tolochko, B. P., and Eliseev, V. S. (2011). “Interaction of diamond with ultrafine Fe powders prepared by different procedures,” Inorg. Mater. 47, 864868.Google Scholar
Furukawa, S., Ehara, K., and Komatsu, T. (2016). “Unique reaction mechanism of preferential oxidation of CO over intermetallic Pt3Co catalysts: surface-OH-mediated formation of a bicarbonate intermediate,” Catal. Sci. Technol. 6, 16421650.Google Scholar
Komogortsev, S. V., Chizhik, N. A., Filatov, E.Yu., Korenev, S. V., Shubin, Yu.V., Velikanov, D. A., Iskhakov, R. S., and Yurkin, G.Yu. (2012). “Magnetic properties and L10 phase formation in CoPt nanoparticles,” Solid State Phenom. 190, 159162.Google Scholar
Komogortsev, S. V., Iskhakov, R. S., Zimin, A. A., Filatov, E.Yu., Korenev, S. V., Shubin, Yu.V., Chizhik, N. A., Yurkin, G.Yu., and Eremin, E. V. (2016). “The exchange interaction effects on magnetic properties of the nanostructured CoPt particles,” J. Magn. Magn. Mater. 401, 236241.Google Scholar
Kraus, W., and Nolze, G. (2000). PowderCell 2.4, Program for the Representation and Manipulation of Crystal Structures and Calculation of the Resulting X-ray Powder Patterns (Federal Institute for Materials Research and Testing, Berlin).Google Scholar
Krumm, S. (1995). “An interactive windows program for profile fitting and size/strain analysis,” Mater. Sci. Forum 228–231, 183188.Google Scholar
Plyusnin, P. E., Makotchenko, E. V., Shubin, Y. V., Baidina, I. A., Korolkov, I. V., Sheludyakova, L. A., and Korenev, S. V. (2015). “Synthesis, crystal structures, and characterization of double complex salts [Au(en)2][Rh(NO2)6]·2H2O and [Au(en)2][Rh(NO2)6],” J. Mol. Struct. 1100, 174179.Google Scholar
Potemkin, D. I., Filatov, E. Yu., Zadesenets, A. V., Snytnikov, P. V., Shubin, Yu.V., and Sobyanin, V. A. (2012). “Preferential CO oxidation over bimetallic Pt–Co catalysts prepared via double complex salt decomposition,” Chem. Eng. J. 207–208, 683689.Google Scholar
Potemkin, D. I., Filatov, E. Yu., Zadesenets, A. V., and Sobyanin, V. A. (2017). “CO preferential oxidation on Pt0.5Co0.5 and Pt-CoOx model catalysts: catalytic performance and operando XRD studies,” Catal. Commun. 100, 232236.Google Scholar
Zadesenets, A., Filatov, E., Plyusnin, P., Baidina, I., Dalezky, V., Shubin, Yu., Korenev, S., and Bogomyakov, A. (2011). “Bimetallic single-source precursors [M(NH3)4][Co(C2O4)2(H2O)2]·2H2O (M = Pd, Pt) for the one run synthesis of CoPd and CoPt magnetic nanoalloys,” Polyhedron 30, 13051312.Google Scholar