Hostname: page-component-745bb68f8f-f46jp Total loading time: 0 Render date: 2025-01-11T22:51:34.539Z Has data issue: false hasContentIssue false

The structure of monoclinic NaNiO2 as determined by powder X-ray and neutron scattering

Published online by Cambridge University Press:  10 January 2013

Stefan Dick
Affiliation:
Institut für Anorganische Chemie der Universität München, Meiserstrasse 1, 80333 München, Germany
Michaela Müller
Affiliation:
Institut für Anorganische Chemie der Universität München, Meiserstrasse 1, 80333 München, Germany
Franziska Preissinger
Affiliation:
Institut für Anorganische Chemie der Universität München, Meiserstrasse 1, 80333 München, Germany
Thomas Zeiske
Affiliation:
Institut für Kristallographie, Universität Tübingen, c/o Hahn–Meitner–Institut Berlin, Glienickerstrasse 100, 14109 Berlin, Germany

Abstract

The crystal structure of low temperature NaNiO2 has been refined by Rietveld methods using powder X-ray diffraction and neutron scattering data. The starting model was based on parameters that had been obtained earlier by X-ray film methods. At room temperature NaNiO2 is monoclinic, C2/m, a=0.53192(2), b=0.28451(1), c=0.55826(4) nm, β=110.449(2)°. NaNiO2 has a layered structure. The Ni–O layer is formed by edge sharing of Jahn–Teller elonganted NiO6 octahedra with Ni–O distances of 0.1911(2) nm and 0.2144(4) nm. The Na ions between these layers also exhibit a distorted octahedral coordination with Na–O distances of 0.2328(2) nm and 0.2369(4) nm. The final R values were Rwp=0.069, RI=0.059, Rexp=0.059 for the neutron and Rwp=0.032, RI=0.034, Rexp=0.017 for the X-ray data.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1997

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bade, H., Bronger, W., and Klemm, W. (1965). “Das Verhalten von Nikkeloxid zu Alkalimetalloxiden beim Erhitzen im Sauerstoffstrom,” Bull. Soc. Chim. Fr., 1124–1129.Google Scholar
Bode, H., Dehmelt, K., and Witte, J. (1969). “Über die Oxidationsprodukte von Ni(II)-hydroxiden,” Z. Anorg. Allg. Chem. 366, 121.CrossRefGoogle Scholar
Cockroft, J. (1993). “PROFIL — a Rietveld Program…” (unpublished).Google Scholar
Dyer, L. D., Borie, B. S., and Smith, G. P. (1954). “Alkali Metal–Nickel Oxides of the Type MNiO 2,J. Am. Chem. Soc. 76, 14991503.CrossRefGoogle Scholar
Glemser, O., and Einerhand, J. (1950). “Über höhere Nickeloxide,” Z. Anorg. Allg. Chem. 261, 2642.CrossRefGoogle Scholar
Zentgraf, H. (1980a). “Na 5NiO 4, das erste Oxoniccolat(III) mit Inselstruktur,” Z. Anorg. Allg. Chem. 462, 6170.CrossRefGoogle Scholar
Zentgraf, H. (1980b). “Über neue Oxoniccolate: Zur Kenntnis von Na 2(NiO 2),Z. Anorg. Allg. Chem. 462, 7179.CrossRefGoogle Scholar