Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-09T06:15:21.876Z Has data issue: false hasContentIssue false

Structure determination from X-ray powder diffraction, DFT calculation, and Hirshfeld surface analysis of two fused bicyclic and tricyclic compounds

Published online by Cambridge University Press:  28 February 2017

Uday Das
Affiliation:
Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, India Department of Physics, Hooghly Mohsin College, Chinsurah, Hooghly-712101, India
Tanusri Dey
Affiliation:
Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, India
Paramita Chatterjee
Affiliation:
Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, India Department of Physics, Lady Brabourne College, Kolkata-700017, India
Alok K. Mukherjee*
Affiliation:
Department of Physics, Jadavpur University, Jadavpur, Kolkata-700032, India
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Crystal structures of two fused cyclic systems have been determined from X-ray powder diffraction data and their molecular geometries and intermolecular interactions have been analyzed by solid state DFT calculation and Hirshfeld surface evaluation, respectively.

Crystal structures of two fused cyclic compounds, 4-(methyl(sulfonyl)methoxy-2-vinyl)-2S*,3aR*,4S*,5,7aS*-(hexahydro-1H-indan-3a-yl)methylmethanesulfonate (1) and (1S*,2S*,4S*,7R*)-7-(dimethyl(phenyl)silyl)-4′,5′-dihydro-2′H-spiro[bicyclo[2.2.1]hept[5]ene-2,3′-furan]-2′-one (2), have been solved from laboratory X-ray powder diffraction data using direct space approach and refined following the Rietveld method. In the absence of strong hydrogen bond donating groups, the crystal packing of 1 and 2 exhibits C–H ⋯ O hydrogen bonds and C–H ⋯ π interactions forming two-dimensional (2D) supramolecular network. The nature of intermolecular interactions in 1 and 2 has been analyzed through the Hirshfeld surface and 2D fingerprint plots. The density functional theory optimized molecular geometries in 1 and 2 agree closely with those obtained from the crystallographic study. Hirshfeld surface analysis of 1, 2 and a few related fused carbocyclic and carbooxacyclic systems retrieved from the Cambridge Structural Database indicates that about 85% of Hirshfeld surface area in these compounds are because of H ⋯ H and O ⋯ H interactions.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2017 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Altomare, A., Cuocci, C., Giacovazzo, C., Moliterni, A., Rizzi, R., Corriero, N., and Falcicchio, A. (2013). “EXPO 2013: a kit of tools for phasing crystal structures from powder data,” J. Appl. Crystallogr. 46, 12311235.Google Scholar
Arlin, J. B., Bhardwaj, R. M., Johnston, A., Miller, G. J., Bardin, J., MacDouqall, F., Fernandes, P., Shankland, K., David, W. I. F., and Florence, A. J. (2014). “Structure and stability of two polymorphs of creatine and its monohydrate,” CrystEngComm 16, 81978204.Google Scholar
Bautista, E., Maldonado, E., and Ortega, A. (2012). “neo-clerodane diterpenes from salvia herbacea,” J. Nat. Prod. 75, 951958.Google Scholar
Becke, A. D. (1988). “Density-functional exchange-energy approximation with correct asymptotic behavior,” Phys. Rev. A 38, 30983100.Google Scholar
Bruno, I. J., Cole, J. C., Kessler, M., Luo, J., Motherwell, W. D. S., Purkis, L. H., Smith, B. R., Taylor, R. R., Cooper, I. S., Harris, E., and Orpen, A. G. (2004). “Retrieval of crystallographically-derived molecular geometry information,” J. Chem. Inf. Comput. Sci. 44, 21332144.Google Scholar
Cremer, D. and Pople, J. A. (1975). “General definition of ring puckering coordinates,” J. Am. Chem. Soc. 97, 13541358.Google Scholar
Das, U., Naskar, J., and Mukherjee, A. K. (2015). “Conformational analysis of an acyclic tetrapeptide: ab-initio structure determination from X-ray powder diffraction, Hirshfeld surface analysis and electronic structure,” J. Pept. Sci. 21, 845852.CrossRefGoogle ScholarPubMed
David, W. I. F. and Shankland, K. (2008). “Structure determination from powder diffraction data,” Acta Crystallogr. A 64, 5264.Google Scholar
Defaut, B., Parsons, T. B., Spencer, N., Male, L., Kariuki, B. M., and Grainger, R. S. (2012). “Synthesis of the trans-hydrindane core of dictyoxetane,” Org. Biomol. Chem. 10, 49264932.Google Scholar
Delley, B. (1990). “An all-electron numerical method for solving the local density functional for polyatomic molecules,” J. Chem. Phys. 92, 508517.CrossRefGoogle Scholar
Dey, T., Chatterjee, P., Bhattacharya, A., Pal, S., and Mukherjee, A. K. (2016). “Three nimesulide derivatives: synthesis, ab initio structure determination from powder x-ray diffraction, and quantitative analysis of molecular surface electrostatic potential,” Cryst. Growth Des. 16, 14421452.CrossRefGoogle Scholar
Ebner, C. and Carreira, M. C. (2015). “Pentafulvene for the synthesis of complex natural products: total syntheses of (±)-pallambins A and B,” Angew. Chem. Int. Ed. Engl. 54, 1122711230.Google Scholar
Favre-Nicolin, V. and Cerny, R. (2002). “ FOX, ‘free objects for crystallography’: a modular approach to ab initio structure determination from powder diffraction,” J. Appl. Crystallogr. 35, 734743.Google Scholar
Favre-Nicolin, V. and Cerny, R. (2004). “A better FOX: using flexible modelling and maximum likelihood to improve direct-space ab initio structure determination from powder diffraction,” Z. Kristallogr. – Cryst. Mater. 219, 847856.Google Scholar
Findley, T. J. K., Sucunza, D., Miller, L. C., Davies, D. T., and Procter, D. J. (2008). “A flexible, stereoselective approach to the decorated cis-hydrindane skeleton: synthesis of the proposed structure of faurinone,” Chem. Eur. J. 14, 68626865.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge Structural Database,” Acta Crystallogr. B 72, 171179.Google Scholar
Harris, K. D. M. and Cheung, E. Y. (2004). “How to determine structures when single crystals cannot be grown: opportunities for structure determination of molecular materials using powder diffraction data,” Chem. Soc. Rev. 33, 526538.Google Scholar
Harris, K. D. M., Tremayne, M., and Kariuki, B. M. (2001). “Contemporary advances in the use of powder x-ray diffraction for structure determination,” Angew. Chem. Int. Ed. Engl. 40, 16261651.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Hirshfeld, F. L. (1977). “Bonded-atom fragments for describing molecular charge densities,” Theor. Chim. Acta 44, 129138.Google Scholar
Hog, D. T., Mayer, P., and Trauner, D. (2012). “A unified approach to trans-hydrindane sesterterpenoids,” J. Org. Chem. 77, 58385843.Google Scholar
Hog, D. T., Huber, F. M., Mayer, P., and Trauner, D. (2014). “The total synthesis of (-)- nitidasin,” Angew. Chem. Int. Ed. Engl. 53, 85138517.Google Scholar
Hussain, N., Hussain, M. M., Carroll, P. J., and Walsh, P. J. (2013). “Chemo- and diastereoselective tandem dual oxidation of B(pin)-substituted allylicalcohols: synthesis of B(pin)-substituted epoxy alcohols, 2-keto-anti-1,3-diols and dihydroxy-tetrahydrofuran-3-ones,” Chem. Sci. 4, 39463957.Google Scholar
Kotha, S., Dipak, M. K., and Mobin, S. M. (2011). “Serendipitous and acid catalyzed synthesis of spirolactones,” Tetrahedron 67, 46164619.Google Scholar
Larson, A. C. and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS) (Report LAUR 86-748) (Los Almos National Laboratory, Los Alamos, New Mexico).Google Scholar
Lee, C., Yang, W., and Parr, R. G. (1988). “Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density,” Phys. Rev. B: Condens. Matter Mater. Phys. 37, 785789.Google Scholar
Maity, S. (2010). “Synthetic studies on terpenoids”, Ph. D. Thesis, Jadavpur University, Kolkata, India.Google Scholar
Maity, S. and Ghosh, S. (2009). “A direct route to angularly substituted hydrindanes. Formal synthesis of bakkenolide-A and synthesis of an advanced intermediate to umbellactal,” Tetrahedron 65, 92029210.CrossRefGoogle Scholar
Pagola, S., Stephens, P. W., Bohle, D. S., Kosar, A. D., and Madsen, S. K. (2000). “The structure of malaria pigment beta-haematin,” Nature 404, 307310.CrossRefGoogle ScholarPubMed
Parkin, A., Barr, G., Dong, W., Gilmore, C. J., Jayatilaka, D., McKinnon, J. J., Spackman, M. A., and Wilson, C. C. (2007). “Comparing entire crystal structures: structural genetic fingerprinting,” CrystEngComm 9, 648652.Google Scholar
Perdew, J. P., Burke, K., and Ernzerhof, M. (1996). “Generalized gradient approximation made simple,” Phys. Rev. Lett. 77, 38653868.Google Scholar
Rietveld, H. M. (1967). “Line profiles of neutron powder-diffraction peaks for structure Refinement,” Acta Crystallogr. 22, 151152.Google Scholar
Seco, J. M., Quinoa, E., and Riguera, R. (2004). “The assignment of absolute configuration by NMR,” Chem. Rev. 104, 17117.CrossRefGoogle Scholar
Spackman, M. A. and Jayatilaka, D. (2009). “Hirshfeld surface analysis,” CrystEngComm 11, 1932.Google Scholar
Spackman, M. A. and McKinnon, J. J. (2002). “Fingerprinting intermolecular interactions in molecular crystals,” CrystEngComm 4, 378392.Google Scholar
Stewart, J. J. (2007). “Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements,” J. Mol. Model. 13, 11731213.Google Scholar
Wagner, U. and Kratky, C. (2015). “Structure elucidation of natural compounds by x-ray crystallography,” Prog. Chem. Org. Nat. Prod. 100, 175.Google Scholar
Williams, P. A., Hughes, C. E., and Harris, K. D. M. (2015). “L-lysine: exploiting powder x-ray diffraction to complete the set of crystal structures of the 20 directly encoded proteinogenic amino acids,” Angew. Chem. Int. Ed. Engl. 54, 39733977.Google Scholar
Wolff, S. K., Grimwood, D. J., McKinnon, J. J., Turner, M. J., Jayatilaka, D., and Spackman, M. (2012). Crystal Explorer, Version 3.1. (Computer Software) (University of Western Australia, Perth, Australia).Google Scholar
Supplementary material: File

Das supplementary material

Das supplementary material 1

Download Das supplementary material(File)
File 3.1 MB