Hostname: page-component-cd9895bd7-dzt6s Total loading time: 0 Render date: 2024-12-28T21:22:23.790Z Has data issue: false hasContentIssue false

Structural elucidation of stabilized tetragonal ThSiO4: A neutron diffraction study

Published online by Cambridge University Press:  01 March 2012

V. Grover
Affiliation:
Applied Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India
Keka R. Chakraborty
Affiliation:
Solid State Physics Division, Bhabha Atomic Research Centre, Mumbai-400 085, India
A. K. Tyagi*
Affiliation:
Applied Chemistry Division, Bhabha Atomic Research Centre, Mumbai-400 085, India
*
a)Electronic mail: [email protected]

Abstract

A new compound Th0.9Ce0.1SiO4, iso-typic to zircon, was prepared by heating predried ThO2, CeO2, and SiO2 (in the mole ratio 0.9:0.10:1.0) by a two-step heating protocol. The polycrystalline sample obtained was characterized by Rietveld refinement of the observed neutron diffraction data with the starting model of tetragonal ThSiO4. It has a body centered tetragonal structure with space group I41amd and four formula units per unit cell. The unit-cell parameters are a=7.1238(4) Å and c=6.3186(95) Å. The RP, Rwp, and Re factors are 7.77%, 10.9%, and 4.85%, respectively. The incorporation of about 10 mol % cerium was used to stabilize the tetragonal modification of ThSiO4.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Degueldre, C. and Paratte, J. M. (1999). “Concepts of an inert matrix fuel, an overview,” J. Nucl. Mater.JNUMAM 274, 1–6.CrossRefGoogle Scholar
Grover, V. and Tyagi, A. K. (2005). “Preparation and bulk thermal expansion studies in M1−xCexSiO4 (M=Th, Zr) system, and stabilization of tetragonal ThSiO4,” J. Alloys Compd.JALCEU 390, 112114.CrossRefGoogle Scholar
Hazen, R. M. and Finger, L. W. (1979). “Crystal structure and compressibility of zircon at high pressure,” Am. Mineral.AMMIAY 64, 196201.Google Scholar
Kleykamp, H. (1999). “Selection of materials as diluents for burning of Plutonium fuels in nuclear reactors,” J. Nucl. Mater.JNUMAM 275, 111.CrossRefGoogle Scholar
Lee, Y. W., Kim, H. S., Kim, S. H., Young, C. Y., Na, S. H., Ledergerber, G., Heimgarbner, G. P., Pouchon, M., and Burghartz, M. (1997). “Preparation of simulated inert matrix fuel with different powders by dry milling method,” J. Nucl. Mater.JNUMAM 274, 7.CrossRefGoogle Scholar
Mursic, Z., Vogt, T., Boysen, H., and Frey, F. (1992). “Single-crystal neutron diffraction study of metamict zircon upto 2000 K,” J. Appl. Crystallogr.JACGAR10.1107/S0021889892002577 25, 519523.CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica BPHYBE310.1016/0921-4526(93)90108-I 192, 5569.CrossRefGoogle Scholar
Sirdeshmukh, D. B. and Subhadra, K. G. (1975). “Note on elastic properties of zircon,” J. Appl. Phys.JAPIAU10.1063/1.322100 46, 36813682.CrossRefGoogle Scholar
Subbarao, E. C., Agarwal, D. K., Mckinstry, H. A., Sallese, C. W., and Roy, R. (1990). “Thermal expansion of compounds of zircon structure,” J. Am. Ceram. Soc.JACTAW 73, 12461252.CrossRefGoogle Scholar
Taylor, M. and Ewing, R. C. (1978). “The crystal structure of ThSiO4 polymorphs: Huttonite and thorite,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR10.1107/S0567740878004951 34, 10741075.CrossRefGoogle Scholar
Vettraino, F., Magnani, G., La Torretta, T., Marmo, E., Coelli, S., Luzzi, L., Ossi, P., and Zappa, G. (1999). “Preliminary fabrication and characterization of inert matrix and thoria fuels for plutonium disposition in light water reactors,” J. Nucl. Mater.JNUMAM 274, 2333.CrossRefGoogle Scholar