Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-12T09:02:52.060Z Has data issue: false hasContentIssue false

Structural characterization of two K2SnX(PO4)3 (X=Fe,Yb) with langbeinite structure

Published online by Cambridge University Press:  01 March 2012

Abderrahim Aatiq*
Affiliation:
Université HassanII-Mohammédia, Faculté des Sciences Ben M’Sik, Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
Btissame Haggouch
Affiliation:
Université HassanII-Mohammédia, Faculté des Sciences Ben M’Sik, Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
Rachid Bakri
Affiliation:
Université HassanII-Mohammédia, Faculté des Sciences Ben M’Sik, Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
Youssef Lakhdar
Affiliation:
Université HassanII-Mohammédia, Faculté des Sciences Ben M’Sik, Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
Ismael Saadoune
Affiliation:
Centre d’ Excellence de Recherche sur les Matériaux (CERM), Laboratoire de Chimie des Matériaux et de l’ environnement, Av. A. Khattabi, B.P. 549, Marrakech, Morocco
*
a)Electronic mail: [email protected]

Abstract

Structures of two K2SnX(PO4)3(X=Fe,Yb) phosphates, obtained by conventional solid state reaction techniques at 950 °C, were determined at room temperature by X-ray powder diffraction using Rietveld analysis. The two materials exhibit the langbeinite-type structure (P213 space group, Z=4). Cubic unit cell parameter values are: a=9.9217(4) Å and a=10.1583(4) Å for K2SnFe(PO4)3 and K2SnYb(PO4)3, respectively. Structural refinements show that the two crystallographically independent octahedral sites (of symmetry 3) have a mixed Sn∕X (X=Fe,Yb) population although ordering is stronger in the Yb phase than in the Fe phase.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aatiq, A. (2004). “Synthesis and structural characterization of ASnFe(PO4)3 (A=Na2,Ca,Cd) phosphate with the Nasicon type structure,” Powder Diffr. PODIE2 10.1154/1.1725232 19, 272279.Google Scholar
Aatiq, A. and Dhoum, H. (2004). “Structure of AFeTi(PO4)3 (A=Ca,Cd) Nasicon phases from powder X-ray data,” Powder Diffr. PODIE2 10.1154/1.1604127 19, 157161.Google Scholar
Aatiq, A. and Dhoum, H. (2006). “Structure of AFeTi(PO4)3 (A=Mn,Sr) Nasicon-type phases,” Ann. Chim. Sci. Mat. 31, 3138.CrossRefGoogle Scholar
Aatiq, A., Ménétrier, M., Croguennec, L., Suard, E., and Delmas, C. (2002). “On the structure of Li3Ti2(PO4)3,” J. Mater. Chem. JMACEP 10.1039/b203652p 12, 29712978.Google Scholar
Battle, P. D., Cheetham, A. K., Harrison, W. T. A., and Long, G. J. (1986). “The crystal structure and magnetic properties of the synthetic langbeinite KBaFe2(PO4)3,” J. Solid State Chem. JSSCBI 10.1016/0022-4596(86)90211-2 62, 1625.Google Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 10.1107/S0108768185002063 41, 244247.CrossRefGoogle Scholar
Carvajal, J. J., Aznar, A., Solé, R., Gavaldá, Jna., Massons, J., Solans, X., Aguiló, M., and Diaz, F. (2003). “Growth and structural characterization of Rb2Ti1.01Er0.99(PO4)3,” Chem. Mater. CMATEX 15, 204211.Google Scholar
Delmas, C., Viala, J. C., Olazcuaga, R., Le Flem, G., Hagenmuller, P., Cherkaoui, F., and Brochu, R. (1981). “Ionic conductivity in Nasicon-type phases Na1+xZr2−xLx(PO4)3 (L=Cr,In,Yb),” Solid State Ionics SSIOD3 3/4, 209214.CrossRefGoogle Scholar
Droß, T. and Glaum, R. (2004). “The langbeinite-type barium vanadium(III) orthophosphate, Ba3V4(PO4)6,” Acta Crystallogr., Sect. E: Struct. Rep. Online ACSEBH 60, i58i60.CrossRefGoogle Scholar
Gustafsson, J. C. M., Norberg, S. T., Svensson, G., and Albertsson, J. (2005). “Two new langbeinites, Rb2YbTi(PO4)3 and Rb2Yb0.32Ti1.68(PO4)3, investigated at 293 and 150 K,” Acta Crystallogr., Sect. C: Cryst. Struct. Commun. ACSCEE 61, i9i13.Google Scholar
Hagman, L. and Kierkegaard, P. (1968). “The crystal structure of NaMe2IV(PO4)3; Me=Ge, Ti,Zr,” Acta Chem. Scand. ACHSE7 22, 18221932.Google Scholar
Hong, H. Y-P. (1976). “Crystal structures and crystal chemistry in the system Na(1+x)Zr2SixP(3−x)O12,” Mater. Res. Bull. MRBUAC 10.1016/0025-5408(76)90073-8 11, 173182.Google Scholar
Isasi, J. and Daidouh, A. (2000). “Synthesis, structure and conductivity study of monovalent phosphates with the langbeinite structure,” Solid State Ionics SSIOD3 10.1016/S0167-2738(00)00677-9 133, 303313.Google Scholar
Kasthuri Rangan, K. , and Gopalakrishnan, J. (1994). “New titanium-vanadium phosphates of Nasicon and Langbeinite structures, and differences between the two structures toward deintercalation of alkali metal,” J. Solid State Chem. JSSCBI 10.1006/jssc.1994.1080 109, 116121.Google Scholar
Masse, R., Durif, A., Guitel, J-C., and Tordjman, I. (1972). “Structure cristalline du monophosphate lacunaire KTi2(PO4)3. Monophosphate lacunaires NbGe(PO4)3 et M5+Ti(PO4)3 pour M5+=Sb,Nb,Ta,” Bull. Soc. Fr. Mineral. Cristallogr. BUFCAE 95, 4755.Google Scholar
Norberg, S. T. (2002). “New phosphate langbeinites, K2MTi(PO4)3 (M=Er,Yb or Y), and an alternative description of the langbeinite framework,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 10.1107/S0108768102013782 58, 743749.Google Scholar
Orlova, A. I., Orlova, V. A., Buchirin, A. V., Korchenkin, K. K., Beskrovnyi, A. I., and Demarin, V. T. (2005). “Cesium and its analogs, Rubidium and Potassium, in rhombohedral [NaZr2(PO4)3 type] and cubic (langbeinite type) phosphates: 2. Properties: Behavior on heating, in aqueous solutions, and in salt melts,” Radiokhimiya RADKAU 47, 235240Orlova, A. I., Orlova, V. A., Buchirin, A. V., Korchenkin, K. K., Beskrovnyi, A. I., and Demarin, V. T. (translated from Radiokhimiya 47, 213218).Google Scholar
Orlova, A. I., Trubach, I. G., Kurazhkovskaya, V. S., Pertierra, P., Salvadó, M. A., García-Granda, S., Khainakov, S. A., and García, J. R. (2003). “Synthesis, characterization, and structural study of K2FeZrP3O12 with langbeinite structure,” J. Solid State Chem. JSSCBI 10.1016/S0022-4596(03)00101-4 173, 314318.Google Scholar
Rodriguez-Carvajal, J. (1997). “Fullprof, Program for Rietveld refinement,” Laboratoire Léon Brillouin (CEA-CNRS) Saclay, France.Google Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN 10.1107/S0567739476001551 32, 751767.Google Scholar
Shpanchenko, R. V., Lapshina, O. A., Antipov, E. V., Hadermann, J., Kaul, E. E., and Geibbel, C. (2005). “New lead vanadium phosphate with langbeinite-type structure: Pb1.5V2(PO4)3,” Mater. Res. Bull. MRBUAC 40, 15691576.Google Scholar