Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-11T22:53:26.412Z Has data issue: false hasContentIssue false

Statistical Inference, Size Distributions and Peak Broadening in Finite Crystals*

Published online by Cambridge University Press:  10 January 2013

A. G. Alvarez
Affiliation:
Centro de Investigación y Desarrollo en Procesos Catalíticos (UNLP), 47 N°257 La Plata 1900, Argentina
R. D. Bonetto
Affiliation:
Centro de Investigación y Desarrollo en Procesos Catalíticos (UNLP), 47 N°257 La Plata 1900, Argentina
D. M. A. Guérin
Affiliation:
Centro de Investigación y Desarrollo en Procesos Catalíticos (UNLP), 47 N°257 La Plata 1900, Argentina
A. Plastino
Affiliation:
Departamento de Física, Universidad Nacional de La Plata, C. C. 67, La Plata 1900, Argentina
L. Rebollo Neira
Affiliation:
Departamento de Física, Universidad Nacional de La Plata, C. C. 67, La Plata 1900, Argentina

Abstract

Calculations of crystal size distributions in oriented clays (montmorillonite and kaolinite) are carried out utilizing X-ray diffraction data together with a method based on information theory. Two different procedures for dealing with the available data are compared. One of them involves some points of the corresponding spectrum, the other correlates the data by means of their moments.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1987

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bienenstock, A. (1961). J. Appl. Phys. 32, 187189.CrossRefGoogle Scholar
Bienenstock, A. (1963). J. Appl. Phys. 34, 1391.CrossRefGoogle Scholar
Cole, W. F. & Lancucki, C. J. (1966). Acta Crystallogr. 21, 836838.CrossRefGoogle Scholar
Guérin, D. M. A., Alvarez, A. G., Rebollo Neira, L. E., Plastino, A. & Bonetto, R. D. (1986). Acta Crystallogr. A42, 3035.CrossRefGoogle Scholar
Katz, A. (1967). Principles of Statistical Mechanics, New York: Freeman.Google Scholar
Klug, H. P. & Alexander, L. E. (1974). X-Ray Diffraction Procedures, 2d ed. New York: J. Wiley and Sons.Google Scholar
Scherrer, P. (1918). Nachr. Ges. Wiss. Goettingen, Math.-Phys. Kl. 2, 98.Google Scholar
Shannon, C. E. (1948). The Mathematical Theory of Communication. Bell Syst. Tech. J. 27, 379–423; 623656.CrossRefGoogle Scholar
Smith, V. H. & Simpson, P. G. (1965). J. Appl. Phys. 36, 32853287.CrossRefGoogle Scholar
Tournarie, M. M. (1956). C. R. Hebd. Séances Acad. Sci. 241, 20162021.Google Scholar
Warren, B. E. & Averbach, B. L. (1950). J. Appl. Phys., 21, 595599.CrossRefGoogle Scholar
Wilson, A. J. C. (1962). Nature (London) 193, 568569.Google Scholar