Hostname: page-component-cd9895bd7-dk4vv Total loading time: 0 Render date: 2024-12-24T19:07:34.076Z Has data issue: false hasContentIssue false

Standard X-Ray Diffraction Powder Patterns from The JCPDS Research Associateship

Published online by Cambridge University Press:  10 January 2013

Howard F. McMurdie
Affiliation:
JCPDS – International Centre fur Diffraction Data
Marlene C. Morris
Affiliation:
JCPDS – International Centre fur Diffraction Data
Eloise H. Evans
Affiliation:
JCPDS – International Centre fur Diffraction Data
Boris Paretzkin
Affiliation:
JCPDS – International Centre fur Diffraction Data
Winnie Wong-Ng
Affiliation:
JCPDS – International Centre fur Diffraction Data
Camden R. Hubbard
Affiliation:
Institute for Materials Science and Engineering, National Bureau of Standards
Rights & Permissions [Opens in a new window]

Extract

Core share and HTML view are not available for this content. However, as you have access to this content, a full PDF is available via the ‘Save PDF’ action button.

The following new or updated patterns are submitted by the JCPDS Research Associateship at the National Bureau of Standards. The patterns are a continuation of the series of standard X-ray diffraction powder patterns published previously in the NBS Circular 539, the NBS Monograph 25, and in this journal. The methods of producing these reference patterns are described in this journal, Vol. 1, No. 1, p. 40 (1986).

The data for each phase apply to the specific sample described. A sample was mixed with one or two internal standards: silicon (SRM640a), silver, tungsten, or fluorophlogopite (SRM675). Expected 2-theta values for these standards are specified in the methods described (ibid.). Data, from which the reported 2-theta values were determined, were measured with a computer controlled diffractometer. Computer programs were used to locate peak positions and calibrate the patterns as well as to perform variable indexing and least squares cell refinement.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1986

References

References

1.Batog, V. N., Pakhomov, V. I., Safronov, G. M., and Fedorov, P. M. (1973). Inorg. Mater. (Engl. Transl.) 9, 1400.Google Scholar
2.Gattow, G. and Fricke, H. (1963). Z. Anorg. Allg. Chem. 324, 287.CrossRefGoogle Scholar
1.Oftedal, I. (1927). Z. Phys. Chem. (Leipzig) 128, 154.Google Scholar
2.Swanson, H. E. and Tatge, E. (1953). Natl. Bur. Stand. (U.S.), Circ. 539 1, 43.Google Scholar
1.Höhne, E. (1962). Monatsber. Dtsch. Akad. Wiss. Berlin 4, 72.Google Scholar
2.Swanson, H. E., Fuyat, R. K., and Ugrinic, G. M. (1955). Natl. Bur. Stand. (U.S.) Circ. 539 4, 65.Google Scholar
3.Bushuev, N. N., Masiennikov, B. M., and Borisov, V. M. (1983). Russ. J. Inorg. Chem. (Engl. Transl.) 28, 2469.Google Scholar
1.Levi, G. R. and Peyronel, G. (1935). Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 92, 190.Google Scholar
2.Vollenkle, H., Wittmann, A., and Nowotny, H. (1963). Monatsh. Chem. 94, 956.CrossRefGoogle Scholar
1.Geller, S. and Wood, E. A. (1956). Acta Crystallogr. 9, 563.CrossRefGoogle Scholar
2.Dalziel, J. A. W. (1959). J. Chem. Soc. 1959, 1993.Google Scholar
1.Dickinson, R. G. and Pauling, L. G. (1923). J. Am. Chem. Soc. 45, 1466.CrossRefGoogle Scholar
2.Traill, J. (1963). Can. Mineral. 7, 524.Google Scholar
3.Swanson, H. E., Gilfrich, N. T., and Ugrinic, G. M. (1955). Natl. Bur. Stand. (U.S.) Circ. 539 5, 47.Google Scholar
1.Cooper, P. A. (1921). Nature 107, 745.CrossRefGoogle Scholar
2.Cooper, P. A. (1922). Nature 110, 544.CrossRefGoogle Scholar
3.Pauling, L. (1930). Phys. Rev. 36, 430.CrossRefGoogle Scholar
4.Parry, G. S. (1962). Acta Crystallogr. 15, 601.CrossRefGoogle Scholar
5.Bijvoet, J. M. and Lely, J. A. (1940). Recl. Trav. Chim. Pays-Bas 59, 908.CrossRefGoogle Scholar
6.Swanson, H. E. and Tatge, E. (1953). Natl. Bur. Stand. (U.S.), Circ. 539 1, 77.Google Scholar
1.Verweel, H. J. and Bijvoet, J. M. (1933). Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem. 100, 201.Google Scholar
2.Verweel, H. J. and Bijvoet, J. M. (1935) Recl. Trav. Chim. Pays-Bas 54, 631.Google Scholar
3.Siegel, L. A. (1949). J. Chem. Phys. 17, 1146.CrossRefGoogle Scholar
4.Swanson, H. E. and Tatge, E. (1953). Natl. Bur. Stand. (U.S.), Circ. 539 1, 78.Google Scholar
1.Averbuch-Pouchot, M. T. and Durif, A. (1983). Z. Kristallogr. 164, 307.CrossRefGoogle Scholar
1.Swanson, H. E., Fuyat, R. K., and Ugrinic, G. M. (1954). Natl. Bur. Stand. (U.S.) Circ. 539 3, 60.Google Scholar
2.Zachariasen, W. H. and Buckley, H. E. (1931). Phys. Rev. 37, 1295.CrossRefGoogle Scholar
3.Larsson, L. O. and Kierkegaard, P. (1969). Acta Chem. Scand. 23, 2253.CrossRefGoogle Scholar
1.Zalkin, A. and Templeton, D. H. (1953). J. Am. Chem. Soc. 75, 2543.CrossRefGoogle Scholar
2.Thoma, R. E. and Brunton, C. D. (1966). Inorg. Chem. 11, 1937.CrossRefGoogle Scholar
3.Greis, O. (1976). Ph.D. Thesis, Univ. Freiburg i. Br., Germany.Google Scholar
1.Garcia-Blanco, S. and Fayos, J. (1968). Z. Kristallogr., Kristallgeom., Kristallphys., Kristallchem., 127, 145.CrossRefGoogle Scholar
2.Harrison, D. E. and Hummel, F. A. (1956). J. Electrochem. Soc. 103, 491.CrossRefGoogle Scholar
3.Bauer, H. (1963). Z. Anorg. Allg. Chem. 320, 306.CrossRefGoogle Scholar
4.Whitaker, A. (1972). J. Mater. Sci. 7, 189.CrossRefGoogle Scholar
5.Gotz, W., Herrmann, V., and Ihl, R. (1969). Z. Anorg. Allg. Chem. 367, 281.CrossRefGoogle Scholar
6.Petzoldt, J. (1966). Glastech. Ber. 39, 130.Google Scholar
1.Gottfried, C. (1927). Neues Jahrb. Mineral., Geol. Palaeontol., Abh., Abt. A. 55A, 393.Google Scholar
2.Rooksby, H. P. and McKeag, A. H. (1941). Trans. Faraday Soc. 37, 308.CrossRefGoogle Scholar
3.Syono, Y., Akinoto, S., and Matsui, Y. (1971). J. Solid State Chem. 3, 369.CrossRefGoogle Scholar
4.Marumo, F. and Syono, Y. (1971). Acta Crystallogr., Sect. B. 27, 1968.CrossRefGoogle Scholar
5.Swanson, H. E., Gilfrich, N. T., and Cook, M. I. (1957). Natl. Bur. Stand. (U.S.) Circ. 539 7, 62.Google Scholar
1.McCullough, J. D. and Trueblood, K. N. (1959). Acta Crystallogr. 12, 507.CrossRefGoogle Scholar
2.Smith, D. K. and Newkirk, H. W. (1965). Acta Crystallogr. 18, 983.CrossRefGoogle Scholar
3.Levin, E. M. and McMurdie, H. F. (1975). Phase Diagrams for Ceramists, (1975) Supplement. (American Ceramic Society, Columbus, OH), 76.Google Scholar
4.Lewis, , General Electric Co., Cincinnati, OH. (private communication)Google Scholar