Hostname: page-component-745bb68f8f-kw2vx Total loading time: 0 Render date: 2025-01-11T22:47:42.085Z Has data issue: false hasContentIssue false

Spatially transient stress effects in thin films by X-ray diffraction

Published online by Cambridge University Press:  01 March 2012

C. E. Murray
Affiliation:
IBM T.J. Watson Research Center, Yorktown Heights, New York 10598
C. C. Goldsmith
Affiliation:
IBM, Microelectronics Division, Hopewell Junction, New York 12533
I. C. Noyan
Affiliation:
Columbia University, Department of Applied Physics and Applied Mathmatics, New York, New York 10027

Abstract

We present a review of the application of diffraction stress∕strain analysis to small volumes. For cases in which the material properties and∕or the stress state are not homogeneous, traditional approaches may yield erroneous stress results. On the other hand, with proper care, relevant mechanical information about the system can be obtained. Through the use of conventional and synchrotron-based X-ray methods, we can determine the amount of strain transfer between thin film features that possess heterogeneous stress distributions and the underlying substrate. Two examples of such studies are presented. The resulting data are used to assess the validity of several models often used to predict the mechanical behavior in thin film∕substrate composites.

Type
Strain/Stress Analysis
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Blech, I. A. and Meieran, E. S. (1967). J. Appl. Phys. JAPIAU 10.1063/1.1710023 38, 29132919.CrossRefGoogle Scholar
Bollenrath, F.Hauk, V., and Muller, E. H. (1967). Z. Metallkd. ZEMTAE 58, 7682.Google Scholar
Chen, W. T. and Nelson, C. W. (1979). IBM J. Res. Dev. IBMJAE 23, 179188.CrossRefGoogle Scholar
Eshelby, J. D. (1957). Proc. R. Soc. London, Ser. A PRLAAZ 241, 376396; Eshelby, J. D. Proc. R. Soc. London, Ser. APRLAAZ1364-5021 (1959). 252, 561569.Google Scholar
Hauk, V. (1997). Structural and Residual Stress Analysis by Nondestructive Methods (Elsevier, New York).Google Scholar
Hill, R. (1952). Proc. Phys. Soc., London, Sect. A PPSAAM 10.1088/0370-1298/65/5/307 65, 349354.CrossRefGoogle Scholar
Hu, S. M. (1979). J. Appl. Phys. JAPIAU 10.1063/1.326575 50, 46614666.CrossRefGoogle Scholar
Murray, C. E. and Noyan, I. C. (1999). Philos. Mag. A PMAADG 10.1080/014186199252723 79, 371389.CrossRefGoogle Scholar
Murray, C. E. and Noyan, I. C. (2002). Philos. Mag. A PMAADG 10.1080/01418610210154691 82, 30873117.CrossRefGoogle Scholar
Murray, C. E. and Noyan, I. C. (2005). Mater. Sci. Forum MSFOEP 490, 1318.CrossRefGoogle Scholar
Neerfeld, H. (1942). Mitt. K. W. I. Eisenforsch. Dusseldorf 24, 6170.Google Scholar
Noyan, I. C. and Cohen, J. B. (1987). Residual Stress: Measurement by Diffraction and Interpretation (Springer, New York).CrossRefGoogle Scholar
Noyan, I. C., Murray, C. E., Chey, J. S., and Goldsmith, C. C. (2004). Appl. Phys. Lett. APPLAB 10.1063/1.1776331 85, 724726.CrossRefGoogle Scholar
Reuss, A. (1929). Z. Angew. Math. Mech. ZAMMAX , 9, 4958.CrossRefGoogle Scholar
Suhir, E. (1989). J. Appl. Mech. JAMCAV 56, 595600.CrossRefGoogle Scholar
Timoshenko, S. and Goodier, J. N. (1951). Theory of Elasticity, 2nd ed. (McGraw–Hill, New York).Google Scholar
Voigt, W. (1910). Lehrbuch der Kristallphysik (Teubner, Leipzig).Google Scholar