Hostname: page-component-586b7cd67f-2plfb Total loading time: 0 Render date: 2024-11-24T19:39:50.742Z Has data issue: false hasContentIssue false

Sm(OH)2NO3: Synthesis, characterization, powder diffraction data, and structure refinement by the Rietveld technique

Published online by Cambridge University Press:  10 January 2013

C. L. Lengauer*
Affiliation:
Inst.f. Mineralogie und Kristallographie, Universität Wien, Dr. Karl Lueger-Ring 1, A-1010 Wien, Austria
G. Giester
Affiliation:
Inst.f. Mineralogie und Kristallographie, Universität Wien, Dr. Karl Lueger-Ring 1, A-1010 Wien, Austria
P. Unfried
Affiliation:
Inst.f. Anorganische Chemie, Universität Wien, Währingerstr.42, A-1090 Wien, Austria
*
a)Author to whom correspondence should be addressed.

Abstract

Sm(OH)2NO3, was prepared by hydrolysis of the corresponding nitrate, leading to a product which is insoluble in water. IR-spectroscopy showed a comparison with the analogous Gd-compound. The temperature of decomposition to SmONO3 is below 573 K. The structure was refined by the Rietveld technique in space group P21, (Z=2), a=6.3852(3) Å, b=3.7784(2) Å, c=7.7402(3) Å, β=97.572(3)°, V=185.11 Å3, Rp=4.9, Rwp=6.3, RB=4.0. The compound is isotypic with Ln(OH)2NO3 (Ln=Pr,Nd,Gd). Infrared spectra and thermal decomposition data are also given for the Gd phase.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1994

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D. E., and Evans, H. T. (1973). “Indexing and least-squares refinement of powder diffraction data,” U.S. Geol. Surv. Comp. Contrib. 20, PB2-16188.Google Scholar
Berar, J.-F., and Lelann, P. (1991). “E.S.D.'s and estimated probable errors obtained in Rietveld refinements with local correlations,” J. Appl. Cryst. 24, 15.CrossRefGoogle Scholar
Bowden, M. E., and Ryan, M. J. (1991). “Comparison of intensities from fixed to variable divergence X-ray diffraction experiments,” Powder Diffr. 6, 7884.CrossRefGoogle Scholar
Caglioti, G., Paoletti, A. and Ricci, F. P. (1958). “Choice of collimators for a crystal spectrometer for neutron diffraction,” Nucl. Inst. 3, 223228.CrossRefGoogle Scholar
Delgado Lopez, A., Parada Cortina, C., and Garcia Martinez, O. (1984). “Synthesis and study of a novel lanthanum(III)hydroxide: La(OH)2NO3·H2O,” An. Quim. B 80, 189.Google Scholar
Fischer, R. X., Lengauer, C. L., Tillmanns, E., Ensink, R. J., Reiss, C. A. and Fantner, E. J. (1993). “PC-Rietveld plus, a comprehensive Rietveld analysis package for PC,” Mater. Sci. Forum 133–136, 287292.Google Scholar
Haschke, J. M. (1974). “Preparation, phase equilibria, crystal chemistry, and some properties of lanthanide hydroxide nitrates,” Inorg. Chem. 13, 18121818.CrossRefGoogle Scholar
Hovestreydt, E. (1983). “On the atomic scattering factor for O2,” Acta Cryst. A 39, 268269.Google Scholar
Ladell, J., Zagofsky, A. and Pearlman, S. (1975). “Cu Kα 2 elimination algorithm,” J. Appl. Cryst. 8, 499506.Google Scholar
Louer, M., Louer, D., Delgado, L. A. and Martinez, O. G. (1989). “The structures of lanthanum hydroxide nitrates investigated by the Rietveld profile refinement technique,” Eur. J. Solid State Inorg. Chem. t.26, 241253.Google Scholar
Lundberg, M. and Skarnulis, A. J. (1976) “The crystal structure of Pr(OH)2NO3,” Acta Cryst. B 32, 29442947.Google Scholar
March, A. (1932). “Mathematische Theorie der Regelung nach der Korngestalt bei affiner Deformation,” Z. Kristallogr. 81, 285297.CrossRefGoogle Scholar
Mullica, D. F., Sappenfield, E. L., and Grossie, D. A. (1986). “Crystal structure of neodymium and gadolinium dihydroxy-nitrate, Ln(OH)2NO3,” J. Solid State Chem. 63, 231236.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Cryst. 2, 6571.Google Scholar
Rossmanith, K. (1972). “Craig-Verteilung von Seltenerdnitraten im System Tri-n-Butylphosphat-Salpetersaure, 4.Mitt,” Monatsh. Chem. 104, 758766.CrossRefGoogle Scholar
Rossmanith, K. and Unfried, P. (1989). “Neuuntersuchung der Methode der thermischen Zersetzung zur Auftrennung von Yttererdnitraten in groβem Maβtab,” Monatsh. Chem. 120, 849862.Google Scholar
Shafer, M. W., and Roy, R. (1959). “Rare-earth polymorphism and phase equilibria in rare-earth oxide-water systems,” J. Am. Ceram. Soc. 42, 563570.CrossRefGoogle Scholar
Unfried, P., Rossmanith, K., and Blaha, H. (1991). “Zwei neue basische Yttrium-Nitrate: Y(OH)x(NO3)3−x·H2O und YOx/2(NO3)3−x(x = 1.5),” Monatsh. Chem. 122, 635644.Google Scholar
Zàk, Z., Unfried, P., and Giester, G. (1994). “The structures of some rare earth basic nitrates [Ln6(μ 6-O)(μ 3-OH)8(H2O)12(NO3)6](NO3)2·xH2O; Ln=Y,Gd,Yb; x(Y,Yb)=4; x(Gd)=5. A novel rare earth metal cluster of the M6X8 type with interstitial O atom,” J. Alloys Compound (in press).Google Scholar