Hostname: page-component-cd9895bd7-7cvxr Total loading time: 0 Render date: 2024-12-28T10:31:25.341Z Has data issue: false hasContentIssue false

Rietveld refinement of the ranciéite structure using synchrotron powder diffraction data

Published online by Cambridge University Press:  29 February 2012

Jeffrey E. Post
Affiliation:
Department of Mineral Sciences, Smithsonian Institution, Washington, D.C.20560-0119
Peter J. Heaney
Affiliation:
Department of Geosciences, 309 Deike Building, Pennsylvania State University, University Park, Pennsylvania 16802
Andreas Ertl
Affiliation:
Institut für Mineralogie und Kristallographie, Geozentrum, Universität Wien, Althanstraße 14, 1090 Wien, Austria

Abstract

Rietveld refinement using synchrotron powder X-ray diffraction data of the ranciéite, Ca0.19K0.01(Mn4+0.910.09)O2⋅0.63H2O, crystal structure reveals significant differences from that reported previously. The interlayer H2O molecules occupy sites halfway between the Mn,O octahedral sheets. The Mn sites in the octahedral sheets have 10% vacancies, and the mean Mn–O distance indicates that all Mn is tetravalent (Mn4+). The interlayer Ca cations are located above and below the Mn vacancies and are octahedrally coordinated to three O2 atoms in the octahedral sheet and three H2O molecules in the interlayer.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appelo, C. A. J., and Postma, D. (1999). “A Consistent Model for Surface Complexation on Birnessite (–MnO2) and its Application to a Column Experiment,” Geochim. Cosmochim. Acta GCACAK 10.1016/S0016-7037(99)00231-8 63, 30393048.CrossRefGoogle Scholar
Banerjee, D., and Nesbitt, H. W. (1999). “Oxidation of Aqueous Cr(III) at Birnessite Surfaces: Constraints on Reaction Mechanism,” Geochim. Cosmochim. Acta GCACAK 10.1016/S0016-7037(99)00003-4 63, 16711687.Google Scholar
Baur, W. H. (1976). “Rutile-type compounds. V. Refinement of MnO2 and MgF2,” Acta Crystallogr. ACBCAR 10.1107/S0567740876007371 32, 22002204.Google Scholar
Drits, V. A., Silvester, E., Gorshkov, A. I., and Manceau, A. (1997). “Structure of Synthetic Monoclinic Na-rich Birnessite and Hexagonal Birnessite: I. Results from X-ray Diffraction and Selected-area Electron Diffraction,” Am. Mineral. AMMIAY 82, 946961.Google Scholar
Drits, V. A., Lanson, B., Gorshkov, A. I., and Manceau, A. (1998). “Substructure and Superstructure of Four-layer Ca-exchanged Birnessite,” Am. Mineral. AMMIAY 83, 97118.Google Scholar
Duff, M. C., Hunter, D. B., Triay, I. R., Bertsch, P. M., Reed, D. T., Sutton, S. R., Shea-McCarthy, G., Kitten, J., Eng, P., Chipera, S. J., and Vaniman, D. T. (1999). “Mineral Associations and Average Oxidation States of Sorbed Pu on Tuff,” Environ. Sci. Technol. ESTHAG 33, 21632169.CrossRefGoogle Scholar
Ertl, A., Pertlik, F., Prem, M., Post, J. E., Kim, S. J., Brandstätter, F., and Schuster, R. (2005). “Ranciéite Crystals from Friesach, Carinthia, Austria,” Eur. J. Mineral. EJMIER 17, 163172.Google Scholar
Golden, D. C., Dixon, J. B., and Chen, C. C. (1986). “Ion Exchange, Thermal Transformations, and Oxidizing Properties of Birnessite,” Clays Clay Miner. CLCMAB 34, 511520.Google Scholar
Golden, D. C., Chen, C. C., and Dixon, J. B. (1987). “Transformation of Birnessite to Buserite, Todorokite, and Manganite Under Mild Hydrothermal Treatment,” Clays Clay Miner. CLCMAB 35, 271280.CrossRefGoogle Scholar
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., and Hausermann, D. (1996). “Two-dimensional Detector Software: From Real Detector to Idealized Image or Two-theta Scan,” High Press. Res. HPRSEL 10.1080/08957959608201408 14, 235248.CrossRefGoogle Scholar
Kim, S. J. (1980). “Birnessite and Ranciéite Problem: Their Crystal Chemistry and New Classification,” J. Geol. Soc. Korea 16, 105113.Google Scholar
Kuma, K., Usui, A., Paplawsky, W., Gedulin, B., and Arrhenius, G. (1994). “Crystal Structures of Synthetic 7 Å and 10 Å Manganates Substituted by Mono- and Divalent Cations,” Miner. Mag. MNLMBB 58, 425447.CrossRefGoogle ScholarPubMed
Lanson, B., Drits, V. A., Silvester, E., and Manceau, A. (2000). “Structure of H-exchanged Hexagonal Birnessite and its Mechanism of Formation from Na-rich Monoclinic Buserite at Low pH,” Am. Mineral. AMMIAY 85, 826838.Google Scholar
Lanson, B., Drits, V. A., Feng, Q., and Manceau, A. (2002). “Structure of Synthetic Na-Birnessite: Evidence for a Triclinic One-layer Unit Cell,” Am. Mineral. AMMIAY 87, 16621671.Google Scholar
Larson, A. C., and Von Dreele, R. B. (2000). General Structure Analysis System (GSAS) (Report LAUR 86–748). Los Alamos, New Mexico: Los Alamos National Laboratory.Google Scholar
Paterson, E., Clark, D. R., Russell, J. D., and Swaffield, R. (1986). “Cation Exchange in Synthetic Manganates; II. The Structure of an Alkylammonium-saturated Phyllomanganate,” Clay Miner. CLMIAF 21, 957964.CrossRefGoogle Scholar
Post, J. E., and Appleman, D. E. (1988). “Chalcophanite, ZnMn3O7⋅3H2O: New Crystal-structure Determinations,” Am. Mineral. AMMIAY 73, 14011404.Google Scholar
Post, J. E., and Bish, D. L. (1989). “Rietveld Refinement of Crystal Structures Using Powder X-ray Diffraction Data,” Rev. Mineral. Geochem. RMGECB 20, 277308.Google Scholar
Post, J. E., Heaney, P. J., and Hanson, J. (2002). “Rietveld Refinement of a Triclinic Structure for Synthetic Na-birnessite Using Synchrotron Powder Diffraction Data,” Powder Diffr. PODIE2 10.1154/1.1498279 17, 218221.Google Scholar
Post, J. E., and Veblen, D. R. (1990). “Crystal-structure Determinations of Synthetic Sodium, Magnesium, and Potassium Birnessite Using TEM and the Rietveld Method,” Am. Mineral. AMMIAY 75, 477489.Google Scholar
Richmond, W. E., Fleischer, M., and Mrose, M. E. (1969). “Studies on Manganese Oxide Minerals. IX. Ranciéite,” Bull. Soc. Fr. Mineral. Cristallogr. BUFCAE 92, 191195.Google Scholar
Shannon, R. D. (1976). “Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalocogenides,” Acta Crystallogr. ACACBN 10.1107/S0567739476001551 32, 751767.CrossRefGoogle Scholar
Silvester, E., Manceau, A., and Drits, V. A. (1997). “Structure of Synthetic Monoclinic Na-rich Birnessite and Hexagonal Birnessite: II. Results from Chemical Studies and EXAFS Spectroscopy,” Am. Mineral. AMMIAY 82, 962978.CrossRefGoogle Scholar
Stephens, P. W. (1999). “Phenomenological Model of Anisotropic Peak Broadening in Powder Diffraction,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889898006001 32, 281289.CrossRefGoogle Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld Refinement of Debye–Scherrer Synchrotron X-ray Data from Al2O3,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889887087090 20, 7983.CrossRefGoogle Scholar