Hostname: page-component-586b7cd67f-dlnhk Total loading time: 0 Render date: 2024-11-28T01:29:13.340Z Has data issue: false hasContentIssue false

RICICLE: A FORTRAN program to refine unit cell parameters of incommensurate structures

Published online by Cambridge University Press:  10 January 2013

R. I. Smith
Affiliation:
The ISIS Facility, Rutherford Appleton Laboratory, Chilton, DIDCOT, Oxfordshire, OX11 0QXUnited Kingdom

Abstract

A FORTRAN 77 program to perform full matrix least-squares refinement of unit cell parameters from powder diffraction patterns showing incommensurate supercell reflections is described. The code is completely general, being applicable to any crystal system, and can refine all three unit cell edges and angles and, in the presence of an incommensurate supercell, can refine the components of the modulation vector along all three reciprocal axes. Estimated standard deviations on all the refined parameters are calculated analytically.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Appleman, D. E., and Evans, H. T. Jr., (1973). Rep. PB216188, U.S. Department Of Commerce, National Technical Information Service.Google Scholar
Chakoumakos, B. C., Budi, J. D., Sales, D. C., and Sonder, E. (1989). Mater. Res. Soc. Symp. Proc. 156, 329.CrossRefGoogle Scholar
Chen, C. H., Werder, D., Liou, S. H., Chen, H. S., and Hong, M. (1988). Phys. Rev. B 37, 9834.CrossRefGoogle Scholar
Edmonds, J. (1986). Powder Diff. 1, 66.Google Scholar
Howie, R. A. and Taylor, H. F. W. (1986). LSQC FORTRAN Program, University Of Aberdeen.Google Scholar
Mighell, A.D., Hubbard, C. R., and Stalick, J. K., (1981). NBS*AIDS83, N.B.S. Tech. Note 1141, Gaithersburg.Google Scholar
Milne, S. J., Gard, J. A., and West, A. R. (1985). Mater. Res. Bull. 20, 557.CrossRefGoogle Scholar
Namgung, C., Irvine, J. T. S., Lachowski, E. E., and West, A. R. (1989). Supercond. Sci. Tech. 2, 140.CrossRefGoogle Scholar
Namgung, C., Lachowski, E. E., Irvine, J. T. S., and West, A. R. (1992). Powder Diff. 7, 49.CrossRefGoogle Scholar
Sands, D. E. (1982). Vectors and Tensors in Crystallography (Addison-Wesley, London).Google Scholar
Sinclair, D. C., Irvine, J. T. S., and West, A. R. (1990). Jap. J. Appl. Phys. 29, 2002.CrossRefGoogle Scholar
Smith, D. K., and Gorter, S. (1991). J. Appl. Crystallogr. 24, 369.CrossRefGoogle Scholar
Stout, G. H., and Jensen, L. H., (1989). X-ray Structure Determination, A Practical Guide (Second Edition) (Wiley, New York.)Google Scholar
Werner, P.-E. (1969). Arkiv. Kemi. 31, 513.Google Scholar