Hostname: page-component-745bb68f8f-g4j75 Total loading time: 0 Render date: 2025-01-11T22:53:42.907Z Has data issue: false hasContentIssue false

Reference Intensity Ratio and Mass Absorption Measurements of Eleven Biotites

Published online by Cambridge University Press:  10 January 2013

Randy L. Kath
Affiliation:
Golder Associates Inc., 3730 Chamblee-Tucker Road, Atlanta, Georgia 30341, U.S.A.
Michael N. Spilde
Affiliation:
Institute of Meteoritics, University of New Mexico, Albuquerque, New Mexico 87106, U.S.A.
Briant L. Davis
Affiliation:
Engineering and Mining Experiment Station, South Dakota School of Mines and Technology, Rapid City, South Dakota 57701, U.S.A.
Deane K. Smith
Affiliation:
Department of Geosciences, The Pennsylvania State University, University Park, Pennsylvania 16082, U.S.A.

Abstract

Pure phase reference intensity ratio determinations were completed on eleven biotites ranging in Fe composition from χFe = 0.058 to χFe = 0.695, where χFe = Fe/(Fe + Mg). The crystal chemistry of biotites requires that the intensity of diffraction for the 00l reflections, and thus the corresponding reference intensity ratio, correlate with the Fe, Mg and Al in the octahedral sites. As Fe occupancy increases in the octahedral site, the Lki for the 00l reflections increases as does the value of ∣F∣2 computed using the Takeda and Ross (1975) biotite model. The ∣F∣2 trend closely parallels the experimental regression of Lki = 6.359χFe + 1.513 (R = 0.91). Observed mass absorption measurements completed by X-ray transmission show a similar trend with μo = 69.36χFe + 47.85 (R = 0.97). Calculated values of μ from biotite chemical analyses agree well with the measured values. These relationships may be used to predict the appropriate Lki needed for quantitative analysis of biotite-bearing specimens if the Fe and Mg content of the biotite can be determined.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1991

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Albee, A.L. & Ray, L. (1970). Anal. Chem. 42, 14081414.CrossRefGoogle Scholar
Bence, A.E. & Albee, A.L. (1968). Jour. Geol. 76, 382403.CrossRefGoogle Scholar
Chung, F.A. (1974). Jour. Appl. Crystallogr. 7, 526531.CrossRefGoogle Scholar
Davis, B.L. (1990). Amer. Ind. Hygiene Assoc. Jour. 51, 297303.CrossRefGoogle Scholar
Davis, B.L. &Johnson, L.R.(1987). Adv. X-ray Anal. 30, 333342.Google Scholar
Davis, B.L. & Walawender, M. (1982). Amer. Mineral. 67, 11351143.Google Scholar
Davis, B.L., Kath, R.L. & Spilde, M.N. (1990). Paw. Diff. 5, 7678.CrossRefGoogle Scholar
Goldrich, S.D. (1984). Chem. Geol. 42, 342347.Google Scholar
Hubbard, C.R., Evans, E.H. & Smith, D.K. (1976). Jour. Appl. Crystallogr. 9, 169174.CrossRefGoogle Scholar
International Union of Crystallography (1974). International Tables for X-Ray Crystallography, v. IV (Revised and Supplementary Tables). Kynoch Press, Birmingham, England.Google Scholar
Johnson, L.R. & Davis, B.L. (1982) Norelco Reporter, 29, 2834.Google Scholar
Papike, J.J. (1988). Rev. Geophys. 26, 407444.CrossRefGoogle Scholar
Papike, J.J. & Cameron, M. (1976). Rev. Geophys. and Space Phys. 14 1, 3780.CrossRefGoogle Scholar
Shearer, C.K., Papike, J.J., Simon, S.B., Davis, B.L. & Laul, J.C. (1988). Jour. Geophys. Res. 93, B11, 1310413122.CrossRefGoogle Scholar
Sturges, W.T., Harrison, R.M. & Barrie, L.A. (1989). Atm. Environ. 23, 10831098.CrossRefGoogle Scholar
Takeda, H. & Ross, M. (1975). Amer. Mineral. 60, 10301040.Google Scholar