Hostname: page-component-745bb68f8f-5r2nc Total loading time: 0 Render date: 2025-01-10T23:08:39.055Z Has data issue: false hasContentIssue false

Recent advances in experimental thermodynamics of metal–organic frameworks

Published online by Cambridge University Press:  20 September 2019

Hui Sun
Affiliation:
Petroleum Processing Research Center, East China University of Science and Technology, Shanghai 200237, China International Joint Research Center of Green Energy Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
Di Wu*
Affiliation:
Alexandra Navrotsky Institute for Experimental Thermodynamics, Washington State University, Pullman, Washington 99163, USA The Gene and Linda Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, USA Department of Chemistry, Washington State University, Pullman, Washington 99163, USA Materials Science and Engineering, Washington State University, Pullman, Washington 99163, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: Email: [email protected]

Abstract

This mini review summarizes recent advances in experimental thermodynamics of metal–organic frameworks (MOFs). Taking advantage of the development in mechanochemistry, near-room temperature solution calorimetry, and low-temperature heat capacity measurements, the energetic landscape, entropy trends, and Gibbs free energy evolutions of MOFs with true polymorphism [Zn(MeIm)2, Zn(EtIm)2, and Zn(CF3Im)2] as framework topology varies were thoroughly explored by integrated calorimetric and computational methodologies. In addition, the formation enthalpies of MOFs with ultrahigh porosity (MOF-177 and UMCM-1) and the simplest structure (metal formates) have been determined. The studies summarized below highlight the complex interplays among interrelated compositional, chemical, and topological (structural) factors in the determination of the thermodynamic parameters of MOFs.

Type
Review Article
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akimbekov, Z. and Navrotsky, A. (2016). “Little thermodynamic penalty for the synthesis of ultraporous metal organic frameworks,” Chem. Phys. Chem. 17, 468470.Google Scholar
Akimbekov, Z., Katsenis, A. D., Nagabhushana, G. P., Ayoub, G., Arhangelskis, M., Morris, A. J., Friščić, T., and Navrotsky, A. (2017). “Experimental and theoretical evaluation of the stability of true MOF polymorphs explains their mechanochemical interconversions,” J. Am. Chem. Soc. 139, 79527957.Google Scholar
Arhangelskis, M., Katsenis, A. D., Novendra, N., Akimbekov, Z., Gandrath, D., Marrett, J. M., Ayoub, G., Morris, A. J., Farha, O. K., Friščić, T., and Navrotsky, A. (2019). “Theoretical prediction and experimental evaluation of topological landscape and thermodynamic stability of a fluorinated zeolitic imidazolate framework,” Chem. Mater. 31, 37773783.Google Scholar
Calvin, J. J., Asplund, M., Akimbekov, Z., Ayoub, G., Katsenis, A. D., Navrotsky, A., Friščić, T., and Woodfield, B. F. (2018). “Heat capacity and thermodynamic functions of crystalline and amorphous forms of the metal organic framework zinc 2-ethylimidazolate, Zn(EtIm)2,” J. Chem. Thermodyn. 116, 341351.Google Scholar
Cook, T. R., Zheng, Y. R., and Stang, P. J. (2013). “Metal-organic frameworks and self-assembled supramolecular coordination complexes: comparing and contrasting the design, synthesis, and functionality of metal-organic materials,” Chem. Rev. 113, 734777.Google Scholar
Furukawa, H., Cordova, K. E., O'Keeffe, M., and Yaghi, O. M. (2013). “The chemistry and applications of metal-organic frameworks,” Science. 341, 1230444.Google Scholar
Li, G., Sun, H., Xu, H., Guo, X., and Wu, D. (2017). “Probing the energetics of molecule-material interactions at interfaces and in nanopores,” J. Phys. Chem. C. 121, 2614126154.Google Scholar
Nagabhushana, G. P., Shivaramaiah, R., and Navrotsky, A. (2018). “Thermochemistry of the simplest metal organic frameworks: formates [M(HCOO)2]·xH2O (M = Li, Mg, Mn, Co, Ni, and Zn),” J. Chem. Thermodyn. 118, 325330.Google Scholar
Rosen, P. F., Calvin, J. J., Dickson, M. S., Katsenis, A. D., Friščić, T., Navrotsky, A., Ross, N. L., Kolesnikov, A. I., and Woodfield, B. F. (2019). “Heat capacity and thermodynamic functions of crystalline forms of the metal-organic framework zinc 2-methylimidazolate, Zn(MeIm)2,” J. Chem. Thermodyn. 136, 160169.Google Scholar
Sun, H., Jiang, H., Kong, R., Ren, D., Wang, D., Tan, J., Wu, D., Zhu, W., and Shen, B. (2019a). “Tuning n-alkane adsorption on mixed-linker ZIF-8-90 via controllable ligand hybridization: insight into the confinement from an energetics perspective.Ind. Eng. Chem. Res. 58, 1327413283.Google Scholar
Sun, H., Ren, D., Kong, R., Wang, D., Jiang, H., Tan, J., Wu, D., Chen, S., and Shen, B. (2019b). “Tuning 1-hexene/n-hexane adsorption on MOF-74 via constructing Co-Mg bimetallic frameworks,” Microporous Mesoporous Mater. 284, 151160.Google Scholar
Wu, D. and Navrotsky, A. (2015). “Thermodynamics of metal-organic frameworks,” J. Solid State Chem. 223, 5358.Google Scholar