Hostname: page-component-745bb68f8f-d8cs5 Total loading time: 0 Render date: 2025-01-09T02:48:18.277Z Has data issue: false hasContentIssue false

Quantitative anomalous powder diffraction analysis of cation disorder in kesterite semiconductors

Published online by Cambridge University Press:  16 June 2016

Daniel M. Többens*
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Department Structure and Dynamics of Energy Materials, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Rene Gunder
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Department Structure and Dynamics of Energy Materials, Hahn-Meitner-Platz 1, 14109 Berlin, Germany Freie Universität Berlin, Institute of Geological Sciences, Malteserstr. 74-100, 12246 Berlin, Germany
Galina Gurieva
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Department Structure and Dynamics of Energy Materials, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Julien Marquardt
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Department Structure and Dynamics of Energy Materials, Hahn-Meitner-Platz 1, 14109 Berlin, Germany Freie Universität Berlin, Institute of Geological Sciences, Malteserstr. 74-100, 12246 Berlin, Germany
Kai Neldner
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Department Structure and Dynamics of Energy Materials, Hahn-Meitner-Platz 1, 14109 Berlin, Germany Freie Universität Berlin, Institute of Geological Sciences, Malteserstr. 74-100, 12246 Berlin, Germany
Laura E. Valle-Rios
Affiliation:
Freie Universität Berlin, Institute of Geological Sciences, Malteserstr. 74-100, 12246 Berlin, Germany
Stefan Zander
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Department Structure and Dynamics of Energy Materials, Hahn-Meitner-Platz 1, 14109 Berlin, Germany
Susan Schorr
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, Department Structure and Dynamics of Energy Materials, Hahn-Meitner-Platz 1, 14109 Berlin, Germany Freie Universität Berlin, Institute of Geological Sciences, Malteserstr. 74-100, 12246 Berlin, Germany
*
a) Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Kesterite-type compound semiconductors, containing copper and zinc, have photovoltaic properties depending on cation distribution in the crystal structure. Anomalous diffraction allows discrimination of isoelectronic cations, in principle allowing a straightforward determination of site occupation factors from data collected at multiple energies close to the X-ray absorption edges of copper and zinc. However, extremely strong correlation between structural parameters precludes this. We present a recipe based on the direct dependency between refined occupation factors and atomic scattering power, which allows to lift the correlations and to detect issues of individual diffraction patterns or assumptions in the model, thereby allowing for reliable quantitative analysis of the Cu/Zn distribution.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2016 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacewicz, R., Antonowicz, J., Podsiadlo, S., and Schorr, S. (2014). “Local structure in Cu2ZnSnS4 studied by the XAFS method,” Solid State Commun. 177, 5456.Google Scholar
Barkhouse, D., Gunawan, O., Gokmen, T., Todorov, T., and Mitzi, D. (2012). “Device characteristics of a 10.1% hydrazine-processed Cu2ZnSn(Se,S)4 solar cell,” Progr. Photovolt. 20(1), 611.Google Scholar
Bérar, J.-F. and Lelann, P. (1991). “E.S.D.'s and estimated probable error obtained in Rietveld refinements with local correlations,” J. Appl. Crystallogr. 24(1), 15.CrossRefGoogle Scholar
Brennan, S. and Cowan, P. L. (1992). “A suite of programs for calculating x-ray absorption, reflection and diffraction performance for a variety of materials at arbitrary wavelengths,” Rev. Sci. Instrum. 63, 850853.CrossRefGoogle Scholar
Choubrac, L., Lafond, A., Guillot-Deudon, C., Moëlo, Y., and Jobic, S. (2012). “Structure flexibility of the Cu2ZnSnS4 absorber in low-cost photovoltaic cells: from the stoichiometric to the copper-poor compounds,” Inorg. Chem. 51(6), 33463348.Google Scholar
Cromer, D. T. and Liberman, D. A. (1981). “Anomalous dispersion calculations near to and on the long-wavelength side of an absorption edge,” Acta Crystallogr. A 37, 267268.CrossRefGoogle Scholar
Erko, A., Packe, I., Hellwig, C., Fieber-Erdmann, M., Pawlizki, O., Veldkamp, M., and Brennan, S. (2000). “KMC-2: the new x-ray beamline at BESSY II,” Synchrotron Radiat. Instrum. 521, 415418.Google Scholar
Hall, S. R., Szymanski, J. T., and Stewart, J. M. (1978). “Kesterite, Cu2(Zn,Fe)SnS4, and stannite, Cu2(Fe,Zn)SnS4, structurally similar but distinct minerals,” Can. Mineral. 16(2), 131137.Google Scholar
Helmholtz-Zentrum Berlin für Materialien und Energie (2016). “KMC-2: an X-ray beamline with dedicated diffraction and XAS endstations at BESSY II,” J. Large-scale Res. Facil. 2, A49.CrossRefGoogle Scholar
Kleeberg, R. and Mibus, J. (2010). “BGMN Application: Copper Shale (Kupferschiefer),” Retrieved from http://www.bgmn.de/copper.html Google Scholar
Kumar, P., Nagarajan, R., and Sarangi, R. (2013). “Quantitative X-ray absorption and emission spectroscopies: electronic structure elucidation of Cu2S and CuS,” J. Mater. Chem. C 1(13), 24482454.Google Scholar
Lafond, A., Choubrac, L., Guillot-Deudon, C., Deniard, P., and Jobic, S. (2012). “Crystal structures of photovoltaic chalcogenides, an intricate puzzle to solve: the cases of CIGSe and CZTS materials,” Zeitschrift Für Anorganische Und Allgemeine Chemie 638(15), 25712577.Google Scholar
Lafond, A., Choubrac, L., Guillot-Deudon, C., Fertey, P., Evain, M., and Jobic, S. (2014). “X-ray resonant single-crystal diffraction technique, a powerful tool to investigate the kesterite structure of the photovoltaic Cu2ZnSnS4 compound,” Acta Crystallogr. B – Struct. Sci. Cryst. Eng. Mater. 70, 390394.Google Scholar
Merritt, E. A. (2014). “X-ray Anomalous Scattering,” Retrieved from http://skuld.bmsc.washington.edu/scatter/ Google Scholar
Nozaki, H., Fukano, T., Ohta, S., Seno, Y., Katagiri, H., and Jimbo, K. (2012). “Crystal structure determination of solar cell materials: Cu2ZnSnS4 thin films using X-ray anomalous dispersion,” J. Alloys Compd. 524, 2225.Google Scholar
Rodríguez-Carvajal, J. (2001). “Recent developments of the program FULLPROF. Commission on powder diffraction (IUCr),” Newsletter 26, 1219.Google Scholar
Rodríguez-Carvajal, J. (2012). Fullprof.2k (Version 5.30). ILL-JRC.Google Scholar
Schorr, S. (2011). “The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study,” Sol. Energy Mater. Sol. Cells 95(6), 14821488.Google Scholar
Schorr, S., Hoebler, H., and Tovar, M. (2007). “A neutron diffraction study of the stannite-kesterite solid solution series,” Eur. J. Mineral. 19(1), 6573.Google Scholar
Scragg, J., Choubrac, L., Lafond, A., Ericson, T., and Platzer-Bjorkman, C. (2014). “A low-temperature order–disorder transition in Cu2ZnSnS4 thin films,” Appl. Phys. Lett. 104(4), 041911.Google Scholar
Wang, W., Winkler, M. T., Gunawan, O., Gokmen, T., Todorov, T. K., Zhu, Y., and Mitzi, D. B. (2014). “Device characteristics of CZTSSe thin-film solar cells with 12.6% efficiency,” Adv. Energy Mater. 4(7), 1301465.Google Scholar
Washio, T., Nozaki, H., Fukano, T., Motohiro, T., Jimbo, K., and Katagiri, H. (2011). “Analysis of lattice site occupancy in kesterite structure of Cu2ZnSnS4 films using synchrotron radiation x-ray diffraction,” J. Appl. Phys. 110(7), 074511.Google Scholar
Wronski, S., Wierzbanowski, K., Baczmanski, A., Lodini, A., Braham, C., and Seiler, W. (2009). “X-ray grazing incidence technique-corrections in residual stress measurement – a review,” Powder Diffr. 24(2), 1115.Google Scholar