Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-27T15:42:19.876Z Has data issue: false hasContentIssue false

Quantification of solid-state impurity with powder X-ray diffraction using laboratory source

Published online by Cambridge University Press:  27 July 2020

Meenakshi Sundaram
Affiliation:
Analytical R&D, Pharmaceutical Development, Biocon Bristol-Myers Squibb Research and Development Center, Syngene International Limited, Bangalore560099, India
Saravanan Natarajan
Affiliation:
Analytical R&D, Pharmaceutical Development, Biocon Bristol-Myers Squibb Research and Development Center, Syngene International Limited, Bangalore560099, India
Amol G. Dikundwar*
Affiliation:
Analytical R&D, Pharmaceutical Development, Biocon Bristol-Myers Squibb Research and Development Center, Syngene International Limited, Bangalore560099, India
Hemant Bhutani*
Affiliation:
Analytical R&D, Pharmaceutical Development, Biocon Bristol-Myers Squibb Research and Development Center, Bristol-Myers Squibb India Private Limited, Bangalore560099, India
*
a)Authors to whom correspondence should be addressed. Electronic mail: [email protected] (A. G. D.); [email protected] (H. B.)
a)Authors to whom correspondence should be addressed. Electronic mail: [email protected] (A. G. D.); [email protected] (H. B.)

Abstract

The application of powder X-ray diffraction (PXRD) for the detection and quantification of low levels of a solid-state chemical impurity, BrettPhos oxide, in an active pharmaceutical ingredient is discussed. It is demonstrated that with appropriate methodology and experimentation, the impurity levels of as low as 0.07% w/w could be detected reliably and limit of quantification of 0.10% w/w could be achieved by PXRD, using a laboratory X-ray source. Method development, validation, and benchmarking using conventional high-performance liquid chromatography are presented in the manuscript highlighting the robustness and reproducibility of such measurements.

Type
Technical Article
Copyright
Copyright © 2020 International Centre for Diffraction Data

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alexander, L., and Klug, H. P. (1948). “Basic aspects of X-ray absorption in quantitative diffraction analysis of powder mixtures,” Anal. Chem. 20, 886889.CrossRefGoogle Scholar
Bernardi, L. S., Ferreira, F. F., Cuffini, S. L., Campos, C. E., Monti, G. A., Kuminek, G., Oliveira, P. R., and Cardoso, S. G. (2013). “Solid-state evaluation and polymorphic quantification of venlafaxine hydrochloride raw materials using the Rietveld method,” Talanta 117, 189195.CrossRefGoogle ScholarPubMed
Bugay, D. E. (2001). “Characterization of the solid-state: spectroscopic techniques,” Adv. Drug Deliv. Rev. 48, 4365.CrossRefGoogle ScholarPubMed
Chieng, N., Rades, T., and Aaltonen, J. (2011). “An overview of recent studies on the analysis of pharmaceutical polymorphs,” J. Pharm. Biomed. Anal. 55, 618644.CrossRefGoogle ScholarPubMed
Cullity, B. C. (1978). Elements of X-Ray Diffraction (Addison-Wesley, Reading), 2nd ed.Google Scholar
Dikundwar, A. G., Chodon, P., Thomas, S. P., and Bhutani, H. (2017). “Supramolecular chemistry of BrettPhos and BrettPhos oxide: breakup of isostructurality via order–disorder phase transitions,” Cryst. Growth Des. 17, 19821990.CrossRefGoogle Scholar
Dikundwar, A. G., Pal, S., Chodon, P., Narasimhamurthy, R., Kameshwar, P., Sundaram, M., and Bhutani, H. (2019). “Solid state behavior of impurities during “in-process” phase purity analysis of an API,” Org. Process Res. Dev. 23, 269273.CrossRefGoogle Scholar
Fors, B. P., Watson, D. A., Biscoe, M. R., and Buchwald, S. L. (2008). “A highly active catalyst for Pd-catalyzed amination reactions: cross-coupling reactions using aryl mesylates and the highly selective monoarylation of primary amines using aryl chlorides,” J. Am. Chem. Soc. 130, 1355213554.CrossRefGoogle ScholarPubMed
Hartwig, J. F. (2008). “Carbon–heteroatom bond formation catalysed by organometallic complexes,” Nature 455, 314322.CrossRefGoogle ScholarPubMed
ICH harmonised guideline Q6A (2000). “Specifications: Test Procedures and Acceptance Criteria for New Drug Substances and New Drug Products: Chemical Substances”. Available at: https://www.ema.europa.eu/en/ich-q6a-specifications-test-procedures-acceptance-criteria-new-drug-substances-new-drug-products (accessed 9 December 2019).Google Scholar
ICH harmonised tripartite guideline Q2 (R1) (1995). “Validation of Analytical Procedures: Text and Methodology”. Available at: https://www.ema.europa.eu/en/ich-q2-r1-validation-analytical-procedures-text-methodology (accessed 9 December 2019).Google Scholar
International Tables for Crystallography (2006). Volume C, Mathematical, physical and chemical tables. doi:10.1107/97809553602060000103CrossRefGoogle Scholar
Jenkins, R., and Snyder, R. L. (1996). “Introduction to X-ray powder diffractometry,” in Chemical Analysis (A Series of Monographs on Analytical Chemistry and Its Applications), edited by Winefordner, J. D. (John Wiley & Sons, New York), Vol. 138, pp. 195201.Google Scholar
Kuncham, S., Shete, G., and Bansal, A. K. (2014). “Quantification of clarithromycin polymorphs in presence of tablet excipients,” J. Excipients Food Chem. 5, 6578.Google Scholar
MDI (2012). JADE 9 (Computer Software), Materials Data, Livermore, CA, USA.Google Scholar
Német, Z., Demeter, A., and Pokol, G. (2009). “Quantifying low levels of polymorphic impurity in clopidogrel bisulphate by vibrational spectroscopy and chemometrics,” J. Pharm. Biomed. Anal. 49, 3241.CrossRefGoogle ScholarPubMed
Német, Z., Sajó, I., and Demeter, A. (2010). “Rietveld refinement in the routine quantitative analysis of famotidine polymorphs,” J. Pharm. Biomed. Anal. 51, 572576.CrossRefGoogle ScholarPubMed
Newman, A. W., and Byrn, S. R. (2003). “Solid-state analysis of the active pharmaceutical ingredient in drug products,” Drug Discov. Today 8, 898905.CrossRefGoogle ScholarPubMed
Roberts, S. N. C., Williams, A. C., Grimsey, I. M., and Booth, S. W. (2002). “Quantitative analysis of mannitol polymorphs. X-ray powder diffractometry – exploring preferred orientation effects,” J. Pharm. Biomed. Anal. 28, 11491159.CrossRefGoogle Scholar
Shen, Y. C. (2011). “Terahertz pulsed spectroscopy and imaging for pharmaceutical applications: a review,” Int. J. Pharm. 417, 4860.CrossRefGoogle ScholarPubMed
Stephenson, G. A., Forbes, R. A., and Reutzel-Edens, S. M. (2001). “Characterization of the solid state: quantitative issues,” Adv. Drug Deliv. Rev. 48, 6790.CrossRefGoogle ScholarPubMed
Surry, D. S., and Buchwald, S. L. (2008). “Biaryl phosphine ligands in palladium-catalyzed amination,” Angew. Chem. Int. Ed. Engl. 47, 63386361.CrossRefGoogle ScholarPubMed
Surry, D. S., and Buchwald, S. L. (2011). “Dialkylbiaryl phosphines in Pd-catalyzed amination: a user's guide,” Chem. Sci. 2, 2750.CrossRefGoogle ScholarPubMed
Suryanarayanan, R. (1995). “X-ray powder diffractometry,” in Physical Characterization of Pharmaceutical Solids, edited by Brittain, H. G. (Marcel Dekker, New York), pp. 187221.Google Scholar
Tiwari, M., Chawla, G., and Bansal, A. K. (2007). “Quantification of olanzapine polymorphs using powder X-ray diffraction technique,” J. Pharm. Biomed. Anal. 43, 865872.CrossRefGoogle ScholarPubMed
US FDA (2007) Guidance for Industry ANDAs: Pharmaceutical Solid Polymorphism. Available at: https://www.fda.gov/media/71375/download (accessed 9 December 2019).Google Scholar
Vitez, I. M., Newman, A. W., Davidovich, M., and Kiesnowski, C. (1998). “The evolution of hot-stage microscopy to aid solid-state characterizations of pharmaceutical solids,” Thermochim. Acta 324, 187196.CrossRefGoogle Scholar
Supplementary material: PDF

Sundaram et al. supplementary material

Sundaram et al. supplementary material

Download Sundaram et al. supplementary material(PDF)
PDF 3 MB