Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T02:00:29.419Z Has data issue: false hasContentIssue false

Preparation and crystal structure of SbV1.50InIII0.50(PO4)3 and (SbV0.50InIII0.50)P2O7

Published online by Cambridge University Press:  29 February 2012

Abderrahim Aatiq
Affiliation:
Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Université HassanII-Mohammédia, Faculté des Sciences Ben M'Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
Rachid Bakri
Affiliation:
Département de Chimie, Laboratoire de Chimie des Matériaux Solides, Université HassanII-Mohammédia, Faculté des Sciences Ben M'Sik, Avenue Idriss El harti, B.P. 7955, Casablanca, Morocco
Aaron Richard Sakulich
Affiliation:
Department of Materials Science and Engineering, Drexel University, Philadelphia, Pennsylvania 19104

Abstract

Synthesis and structure of two phosphates belonging to the ternary Sb2O5–In2O3–P2O5 system are realized. Structures of SbV1.50InIII0.50(PO4)3 and (SbV0.50InIII0.50)P2O7 phases, obtained by solid state reaction in air at 950 °C, were determined at room temperature from X-ray powder diffraction using the Rietveld method. SbV1.50InIII0.50(PO4)3 have a monoclinic (space group P21/n) distortion of the Sc2(WO4)3-type framework. Its structure is constituted by corner-shared SbO6 or InO6 octahedra and PO4 tetrahedra. Monoclinic unit cell parameters are a=11.801(2) Å, b=8.623(1) Å, c=8.372(1) Å, and β=90.93(1)°. (Sb0.50In0.50)P2O7 is isotypic with (Sb0.50Fe0.50)P2O7 and crystallizes in orthorhombic system (space group Pna21) with a=7.9389(1) Å, b=16.0664(2) Å, and c=7.9777(1) Å. Its structure is built up from corner-shared SbO6 or InO6 octahedra and P2O7 groups (two group-types). Each P2O7 group shares its six vertices with three SbO6 and three InO6 octahedra, and each octahedron is connected to six P2O7 groups.

Type
TECHNICAL ARTICLES
Copyright
Copyright © Cambridge University Press 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aatiq, A. and Bakri, R. (2007). “Crystal structures of newly synthesized SbV1.50FeIII0.50(PO4)3 and (SbV0.50FeIII0.50) P2O7,” Powder Diffr. PODIE2 10.1154/1.2434788 22, 4754.CrossRefGoogle Scholar
Aatiq, A., Hassine, R., Tigha, M. R., and Saadoune, I. (2005). “Structures of two newly synthesized A 0.50SbFe(PO4)3A=(Mn,Cd) Nasicon phases,” Powder Diffr. PODIE2 10.1154/1.1862252 20, 3339.CrossRefGoogle Scholar
Aatiq, A., Tigha, M. R., Hassine, R., and Saadoune, I. (2006). “Crystallochemistry and structural studies of two newly CaSb0.50Fe1.50(PO4)3 and Ca0.50SbFe(PO4)3 Nasicon phases,” Powder Diffr. PODIE2 10.1154/1.2104535 21, 4551.CrossRefGoogle Scholar
Birkedal, H., Andersen, A. M. K., Arakcheeva, A., Chapuis, G., Norby, P., and Pattison, P. (2006). “The room-temperature superstructure of ZrP2O7 is orthorhombic: there are no unusual 180° P-O-P bond angles,” Inorg. Chem. INOCAJ 10.1021/ic0600174 45, 43464351.CrossRefGoogle ScholarPubMed
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci. ASBSDK 10.1107/S0108768185002063 41, 244247.CrossRefGoogle Scholar
Jouanneaux, A., Fitch, A. N., Oyetola, S., Verbaere, A., Guyomard, D., and Piffard, Y. (1993). “The M 1/2IIIM 3/2V(PO4)3 compounds; M=Sb, Nd, Eu, Bi; M′=Sb,Nb,Ta. Preparation and structure,” Eur. J. Solid State Inorg. Chem. EJSCE5 30, 125137.Google Scholar
Jouanneaux, A., Verbaere, A., Guyomard, D., Piffard, Y., Oyetola, S., and Fitch, A. N. (1991). “Sb2(PO4)3, a new mixed-valence antimony phosphate. Preparation and crystal structure,” Eur. J. Solid State Inorg. Chem. EJSCE5 28, 755765.Google Scholar
Kasahara, K., Imoto, H., and Saito, T. (1995). “Preparation and crystal structure of a new form of Sb2(PO4)3 and M 1/2Sb3/2V(PO4)3 (M=Y, In, and Sc),” J. Solid State Chem. JSSCBI 10.1006/jssc.1995.1317 118, 104111.CrossRefGoogle Scholar
Oyetola, S., Verbaere, A., Guyomard, D., Grossnier, M. P., Piffard, Y., and Tournoux, M. (1991). “New ZrP2O7-like diphosphates of either mixed (M 0.50IIIM 0.50V) cations (M=Sb, Bi, Nd, Eu; M′=Sb, Nb, Ta) or MV cations (MV=Ta, Nb): synthesis and structure,” Eur. J. Solid State Inorg. Chem. EJSCE5 28, 2336.Google Scholar
Oyetola, S., Verbaere, A., Guyomard, D., and Piffard, Y. (1988). “Bi1/2IIISb3/2V(PO4)3: a new type of M 2(XO4)3 framework related to garnet and nasicon,” J. Solid State Chem. JSSCBI 10.1016/0022-4596(88)90096-5 77, 102111.CrossRefGoogle Scholar
Rodríguez-Carvajal, J. (1990). “FullProf: A Program for Rietveld Refinement and Pattern Matching Analysis,” Satellite Meeting on Powder Diffraction of the XV Congress of the IUCr, Toulouse, France, p. 127.Google Scholar
Sanz, J., Iglesias, J. E., Soria, J., Losilla, E. R., Aranda, M. A. G., and Bruque, S. (1997). “Structural disorder in the cubic 3×3×3 superstructure of TiP2O7. XRD and NMR study,” Chem. Mater. CMATEX 10.1021/cm970057t 9, 9961003.CrossRefGoogle Scholar
Shannon, R. D. (1976). “Revised effective ionic radii and systematic studies of interatomic distances in halides and chalcogenides,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN 10.1107/S0567739476001551 32, 751767.CrossRefGoogle Scholar
Varga, T., Wilkinson, A. P., Haluska, M. S., and Payzant, E. A. (2005). “Preparation and thermal expansion of (M0.50IIIM0.50V)P2O7 with the cubic ZrP2O7 structure,” J. Solid State Chem. JSSCBI 10.1016/j.jssc.2005.09.006 178, 35413546.CrossRefGoogle Scholar
Verbaere, A., Oyetola, S., Guyomard, D., and Piffard, Y. (1988). “New mixed-valence antimony phosphates: α- and β-SbIIISbV (P2O7)2,” J. Solid State Chem. JSSCBI 10.1016/0022-4596(88)90161-2 75, 217224.CrossRefGoogle Scholar