Hostname: page-component-586b7cd67f-dsjbd Total loading time: 0 Render date: 2024-11-30T23:01:18.832Z Has data issue: false hasContentIssue false

Powder X-ray structural studies and reference diffraction patterns for three forms of porous aluminum terephthalate, MIL-53(A1)

Published online by Cambridge University Press:  27 June 2019

W. Wong-Ng*
Affiliation:
Materials Measurement Science Division, National Institution of Standards and Technology, Gaithersburg, MD 20899, USA
H. G. Nguyen
Affiliation:
Chemical Science Division, National Institution of Standards and Technology, Gaithersburg, MD 20899, USA
L. Espinal
Affiliation:
Materials Measurement Science Division, National Institution of Standards and Technology, Gaithersburg, MD 20899, USA
D. W. Siderius
Affiliation:
Chemical Science Division, National Institution of Standards and Technology, Gaithersburg, MD 20899, USA
J. A. Kaduk
Affiliation:
Department of Chemical Sciences, Illinois Institute of Technology, Chicago, IL 60616, USA
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Powder X-ray diffraction patterns for three forms of MIL-53(Al), a metal organic framework (MOF) compound with breathing characteristics, were investigated using the Rietveld refinement method. These three samples are referred to as the MIL-53(Al)as-syn (the as synthesized sample), orthorhombic, Pnma, a = 17.064(2) Å, b = 6.6069(9) Å, c = 12.1636(13) Å, V = 1371.3(2) Å3, Z = 4), MIL-53(Al)LT-H (low-temperature hydrated phase, monoclinic P21/c, a = 19.4993(8) Å, b = 15.2347(6) Å, c = 6.5687(3) Å, β = 104.219(4) °, V = 1891.55(10) Å3, Z = 8), and MIL-53(Al)HT-D (high-temperature dehydrated phase, Imma, a = 6.6324(5) Å, b = 16.736(2) Å, c = 12.840(2), V = 1425.2(2) Å3, Z = 4). The crystal structures of the “as-syn” sample and the HT-D sample are confirmed to be the commonly adopted ones. However, the structure of the MIL-53(Al)LT-H phase is confirmed to be monoclinic with a space group of P21/c instead of the commonly accepted space group Cc, resulting in a cell volume double in size. The structure has two slightly different types of channel. The pore volumes and pore surface area were estimated to be 0.11766 (8) cm3/g and 1461.3(10) m2/g for MIL-53(Al)HT-D (high-temperature dehydrated phase), and 0.08628 (5) cm3/g and 1401.6 (10) m2/g for MIL-53(Al)as-syn phases, respectively. The powder patterns for the MIL-53(Al)as-syn and MIL-53(Al)HT-D phases are reported in this paper.

Type
Technical Article
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ahnfeldt, T., Gunzelmann, D., Loiseau, D., Hirsemann, T., Senker, J., Férey, G., and Stock, N. (2009). “Synthesis and modification of a functionalized 3D open-framework structure with MIL-53 topology,” Inorg. Chem. 48(7), 3057.Google Scholar
Alhamami, M., Doan, H., and Cheng, C.-H. (2014). “A review of breathing behaviors of metal-organic-frameworks (MOFs) for gas adsorption,” Materials. (Basel) 7, 31983250.Google Scholar
Bloch, E. D., Hudson, M. R., Mason, J. A., Queen, W. L., Zadrozny, J. M., Chavan, S., Bordiga, S., Brown, C. M., and Long, J. R. (2014). “Reversible CO binding enables tunable CO/H2 and CO/N2 separations in metal-organic frameworks with exposed divalent metal cations,” J. Am. Chem. Soc. 136(30), 1075210761.Google Scholar
Bondi, A. (1964). “van der Waals volumes and radii,” J. Phys. Chem. 68(3), 441451.Google Scholar
Bourrelly, S., Llewellyn, P. L., Serre, C., Millange, F., Loiseau, T., and Férey, G. (2005). “Different adsorption behaviors of methane and carbon dioxide in the isotypic nanoporous metal terephthalates MIL-53 and MIL-47,” J. Am. Chem. Soc. 127, 1351913521.Google Scholar
Bourrelly, S., Serre, C., Vimont, A., Ramsahye, N. A., Maurin, G., Daturi, M., Filinehuk, Y., Férey, G., and Llewellyn, P. L. (2007). “A multidisciplary approach to understanding sorption induced breathing in the metal organic framework MIL53(Cr),” in Zeolites to Porous Materials-The 40th Anniversary of International Zeolite Conference, edited by Xu, R., Gao, Z., Chen, J. and Yan, W. (Elsevier Science, Amsterdam), pp. 10081014.Google Scholar
Britt, D., Furukawa, H., Wang, B., Glover, T. G., and Yaghi, O. M. (2009). “Highly efficient separation of carbon dioxide by a metal-organic framework replete with open metal sites,” Proc. Natl. Acad. Sci. 106(49), 2063720640.Google Scholar
Carrington, E. J., Vitórica-Yrezábal, I. J., and Brammer, L. (2014). “Crystallographic studies of gas sorption in metal-organic frameworks,” Acta Cryst. B70, 404422.Google Scholar
Caskey, S. R., Wong-Foy, A. G., and Matzger, A. J. (2008). “Dramatic tuning of carbon dioxide uptake via metal substitution in a coordination polymer with cylindrical pores,” J. Am. Chem. Soc. 130, 1087010871.Google Scholar
Chen, R., Yao, J., Gu, Q., Smeets, S., Barlocher, C., Gu, H., Zhu, D., Morris, W., Yaghi, O. M., and Wang, H. (2013). “A Two-dimensional zeolitic imidazolate framework with a cushion-shaped cavity for CO2 adsorption,” Chem. Commun. 49, 95009502.Google Scholar
Choi, S., Drese, J., and Jones, C. W. (2009). “Absorbent materials for carbon dioxide capture from large anthropogenic point source,” ChemSusChem. 2(9), 796854.Google Scholar
Chui, S. S.-Y., Lo, S. M.-F., Charmant, J. P. H., Orpen, A. G., and Williams, I. D. (1999). “A chemically functionalizable nanoporous material [Cu3(TMA)2(H2O)3]n,” Science 283, 1148.Google Scholar
Cockayne, E. (2017). “Thermodynamics of the flexible metal-organic framework materials MIL-53(Cr) from first principles,” J. Phys. Chem. 121, 43124317.Google Scholar
Dey, C., Kundu, T., Biswal, B. P., Mallick, A., and Banerjee, R. (2014). “Crystalline metal-organic frameworks (MOFs): synthesis, structure and function,” Acta Cryst. B70, 310.Google Scholar
Duren, T., Millange, F., Ferey, G., Walton, K. S., and Snurr, R. Q. (2007). “Calculating geometric surface areas as a characterization tool for metal–organic frameworks,” J. Phys. Chem. C 111, 15350.2018.Google Scholar
Espinal, L., Wong-Ng, W., Kaduk, J. A., Allen, A. J., Snyder, C. R., Chiu, C., Siderius, D. W., Li, L., Cockayne, E., Espinal, A. E., and Suib, S. L. (2012). “Time dependent CO2 sorption hysteresis in a one-dimensional microporous octahedral molecular sieve,” J. Amer. Chem. Soc. 134(18), 79447951.Google Scholar
Feng, D., Gu, Z.-Y., Chen, Y.-P., Park, J., Wei, Z., Sun, Y., Bosch, M., Yuan, S., and Zhou, H.-C. (2014a). “A highly stable porphyrinic zirconium metal-organic framework with shp-a topology,” J. Am. Chem. Soc. 136, 1771417717.Google Scholar
Feng, D., Wang, K., Su, J., Liu, T.-F., Park, J., Wei, Z., Bosch, M., Yakovenko, A., Zou, X., and Zhou, H.-C. (2014b). “A highly stable zeotype mesoporous zirconium metal-organic framework with ultralarge pores,” Angew. Chem. Int. Ed., 54(1), 149154.Google Scholar
Finger, L. W., Cox, D. E., and Jephcoat, A. P. (1994). “A correction for powder diffraction peak asymmetry due to axial divergence,” J. Appl. Cryst. 27, 892900.Google Scholar
Frost, H., Duren, T., and Snurr, R. Q. (2006). “Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal–organic frameworks,” J. Phys. Chem. B 110, 9565.Google Scholar
Furukawa, H., Cordova, K. E., O'Keeffe, M., and Yaghi, O. M. (2013). “The chemistry and applications of metal-organic frameworks,” Science 341, 1230444–11230444-12.Google Scholar
Gao, W.-Y., Chrzanowski, M., and Ma, S. (2014). “Metal-metalloporphyrin frameworks: resurging class of functional materials,” Chem. Soc. Rev. 43, 58415866.Google Scholar
Gelb, L. D., and Gubbins, K. E. (1999). “Pore size distributions in porous glasses: a computer simulation study,” Langmuir 15(2), 305308.Google Scholar
Kauffman, K. L., Culp, J. T., Allen, A. J., Espinal-Thielen, L., Wong-Ng, W., Brown, T. D., Goodman, A., Bernardo, M. P., Pancoast, R. J., Chirdon, D., and Matranga, C. (2011). “Selective adsorption of CO2 from light gas mixtures using a structurally dynamic porous coordination polymer,” Angew Chem. Int. Ed. 50, 1088810892.Google Scholar
Larson, A. C., and Von Dreele, R. B. (2004). General Structure Analysis System (GSAS) (Report LAUR 86-748). Los Alamos, USA: Los Alamos National Laboratory.Google Scholar
Leynaud, O., Barnes, P., and Férey, G. (2007). “An explanation for the very large breathing effect of a metal-organic framework during CO2 adsorption,” Adv. Mater. 19, 22462251.Google Scholar
Liu, E., Her, J.-H., Dailly, A., Ramirez-Cuesta, A. J., Neumann, D. A., and Brown, C. M. (2008). “Reversible structural transition in MIL-53 with large temperature hysteresis,” J. Am. Chem. Soc. 130, 1181311818.Google Scholar
Liu, Y., Wang, Z. U., and Zhou, H.-C. (2012). “Recent advances in carbon dioxide capture with metal-organic frameworks,” Greenhouse Gas Sci Technol. 2, 239259.Google Scholar
Llewellyn, P. L., Maurin, G., Devic, T., Lorea-Serna, S., Rosenbach, N., Serre, C., Bourrelly, S.; Horeajada, P., Filinchuk, Y., and Ferey, G. (2008). “Prediction of the conditions for breathing of metal organic framework materials using a combination of X-ray powder diffraction, microcalorimetry, and molecular simulation,” J. Am. Chem. Soc. 130, 1280812814.Google Scholar
Loiseau, T., Serre, C., Huguenard, C., Fink, G., Taulelle, F., Henry, M., Bataille, T., and Ferey, G. (2004). “A rationale for the large breathing of the porous aluminum terephthalate (MIL-53) upon hydration,” J. Chem-Eur. 10, 13731382.Google Scholar
Meng, L., Cheng, Q., Kim, C., Gao, W.-Y., Wojtas, L., Cheng, Y.-S., Zaworotko, M. J., Zhang, X. P., and Ma, S. (2012). “Crystal engineering of a microporous, catalytically active fcu topology MOF using a custom-designed metalloporphyrin linker,” Angew Chem. Int. Ed. 51, 1008210085.Google Scholar
Morris, R. E., and Wheatley, P. S. (2008). “Gas storage in nanoporous materials,” Angew. Chem. Int. Ed. 47, 49664981.Google Scholar
Mounfield, W. P. III, and Walton, K. S. (2015). “Effect of synthesis solvent on the breathing behavior of MIL-53 (Al),” J. Colloid and Interface Sci. 447, 3339.Google Scholar
Ortiz, G, Chaplais, G., Paillaud, J.-L., Nouali, H., Pataron, J., Raya, J., and Marichal, C. (2014). “New insights into the hydrogen bond network in Al-MIL53 and Ga-MIL-53,” J. Phy. Chem. 118, 22-21-22029.Google Scholar
Palmer, J. C., Moore, J. D., Brennan, J. K., and Gubbins, K. E. (2011). “Simulating local adsorption isotherms in structurally complex porous materials: a direct assessment of the slit pore model,” J. Phys. Chem. Lett., 2(3), 165169.Google Scholar
PDF4+ (Database, 2019), edited by Dr. Soorya Kabekkodu, International Centre for Diffraction Data, Newtown Square, PA, 19073-3273, USA.Google Scholar
Potoff, J. J., and Siepmann, J. I. (2001). “Vapor-liquid equilibria of mixtures containing alkanes, carbon dioxide and nitrogen,” AIChE J. 47, 16761682.Google Scholar
Queen, W. L., Hudson, M. R., Bloch, E. D. J. A., Gonzalez, M. L., Lee, J. S., Gygi, D., Howe, J. D., Lee, K., Darwish, T. A., James, M., Peterson, V. K., Teat, S. J., Smit, B., Neaton, J. B., Long, J. R., and Brown, C. M. (2014). “Comprehensive study of carbon dioxide adsorption in the metal-organic frameworks M2(dobdc) (M=Mg, Mn, Fe, Co, Ni, Cu, Zn),” Chem. Sci. 5, 45694581.Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. 2, 6571.Google Scholar
Rowland, R. S., and Taylor, R. (1996). “Intermolecular nonbonded contact distances in organic crystal structures: comparison with distances expected from van der Waals radii,” J. Phys. Chem., 100(18), 73847391.Google Scholar
Rowsell, J. L. C., and Yaghi, O. M. (2004). “Metal-organic frameworks: a New class of porous materials,” Microporous Mesoporous Mater. 73, 314.Google Scholar
Seoane, B., Sorribas, S., Mayoral, A., Tellez, C, and Coronas, J. (2015). “Real-time monitoring of breathing of MIL-53(Al) by environmental SEM,” Microporous Mesoporous Mater. 203, 1723.Google Scholar
Serre, C., Millange, F., Thouvenot, C., Nogues, M., Marsolier, G., Louër, D., and Férey, G. (2002). “Very large breathing effect in the first nanoporous chromium (III)-based solids: MIL-53 or CrIII(OH)·{O2C-C6H4-CO2}·{HO2C- C6H4- CO2H}x·H2Oy,” J. Am. Chem. Soc. 124, 1351913526.Google Scholar
Serre, C., Bourrelly, S., Vimont, A., Ramsahye, N., Maurin, G., Llewellyn, M. D., Filinchuk, Y., and Skoulidas, A. I. (2004). “Molecular dynamics simulations of gas diffusion in metal-organic frameworks: argon in CuBTC,” J. Am Chem. Soc. 126, 13561357.Google Scholar
Stephens, P. W. (1999). “Microstrain broadening,” J. Appl. Crystallogr. 32, 281289.Google Scholar
Thompson, P., Cox, D. E., and Hastings, J. B. (1987). “Rietveld refinement of Debye-Scherrer synchrotron X-ray data from A12O3,” J. Appl. Cryst. 20, 7983.Google Scholar
Tranchemontagne, D. J., Hunt, J. R., and Yaghi, O. M. (2008). “Room temperature synthesis of metal-organic framework: MOF-5, MOF-74, MOF-177, MOF-199, and IRMOF-0,” Tetrahedron 64, 85538557.Google Scholar
Vimont, A., Travert, A., Bazin, P., Lavalley, J.-C., Daturi, M., Serre, C., Férey, G., Bourrelly, S., and Llewellyn, P. L. (2007). “Evidence of CO2 molecule acting as an electron acceptor on a nanoporous metal-organic-framework MIL-53 or Cr3+(OH)(O2C-C6H4-CO2),” Chem. Commun. 2007, 32913293.Google Scholar
Walton, K. S., and Snurr, R. Q. (2007). “Applicability of the BET method for determining surface areas of microporous metal–organic frameworks,” J. Am. Chem. Soc. 129, 8552.Google Scholar
Wang, Q. M., Shen, D., Bülow, M., Lau, M. L., Deng, S., Fitch, F. R., Lemcoff, N. O., and Semanscin, J. (2002). “Metallo-organic molecular sieve for gas separation and purification,” Microporous Mesoporous Mater. 55, 217230.Google Scholar
Wong-Ng, W., McMurdie, H. F., Hubbard, C. R., and Mighell, A. D. (2001). “JCPDS-ICDD research associateship (cooperative program with NBS/NIST),” J. Res Natl Inst Stand Technol. 106(6), 10131028.Google Scholar
Wong-Ng, W., Kaduk, J. A., Espinal, L., Suchomel, M., Allen, A. J., and Wu, H. (2011). “High- resolution synchrotron X-ray diffraction study of Bis(2-methylimidazolyl)-Zinc, C8H10N4Zn (ZIF-8),” Powd Diffr. 26, 234.Google Scholar
Wong-Ng, W., Kaduk, J. A., Wu, H., and Suchomel, M. (2012). “Synchrotron X-ray studies of metal-organic framework M2(2,5-dihydroxyterephthalte), M=(Mn,Co,Ni,Zn) (MOF74),” Powd. Diffr. 27(4), 256262.Google Scholar
Wong-Ng, W., Culp, J. T., Chen, Y. S., Zavalij, P., Espinal, L., Siderius, D. W., Allen, A. J., Scheins, S., and Matranga, C. (2013). “Improved synthesis and crystal structure of the flexible pillared layer porous coordination polymer: Ni(1,2-bis(4-pyridyl)ethylene)[Ni(CN)4],” CrystEngComm 15, 46844693.Google Scholar
Wong-Ng, W., Kaduk, J. A., Siderius, D. L., Allen, A. L., Espinal, L., Boyerinas, B. M., Levin, I., Suchomel, M. R., Ilavsky, J., Li, L., Williamson, I.; Cockayne, E., and Wu, H. (2015). “Reference diffraction patterns, microstructure, and pore size distribution for the copper (II) benzene-1,3,5-tricarboxylate metal organic framework (Cu-BTC) compounds,” Powd. Diffr. 30(1), 213.Google Scholar
Wong-Ng, W., Williamson, I., Lawson, M., Siderius, D. W., Culp, J. T., Chen, Y-S., and Li, L. (2018). “Electronic structure, pore size distribution, and sorption characterization of an unusual MOF, {[Ni(dpbz)][Ni(CN)4]}n, dpbz=1,4-bis(4-pyridyl)benzene,” J. Appl. Phys. 123, 245104.Google Scholar
Wu, H., Simmons, J. M., Srinivas, G., Zhou, W., and Yildirim, T. (2010). “Adsorption sites and binding nature of CO2 in prototypical metal-organic frameworks-A combined neutron diffraction and first-principles study,” J. Phys. Chem. Lett. 1, 19461951.Google Scholar
Yaghi, O. M., and Li, Q. (2009). “Reticular chemistry and metal-organic frameworks for clean energy,” MRS Bull. 34, 682690.Google Scholar
Zhou, H. C., and Kitagawa, S. (2014). “Metal–organic frameworks (MOFs),” Chem. Soc. Rev. 43, 54155418.Google Scholar
Supplementary material: File

Wong-Ng et al. supplementary material

Wong-Ng et al. supplementary material 1

Download Wong-Ng et al. supplementary material(File)
File 2.3 KB
Supplementary material: File

Wong-Ng et al. supplementary material

Wong-Ng et al. supplementary material 2

Download Wong-Ng et al. supplementary material(File)
File 262.1 KB
Supplementary material: File

Wong-Ng et al. supplementary material

Wong-Ng et al. supplementary material 3

Download Wong-Ng et al. supplementary material(File)
File 625.7 KB
Supplementary material: File

Wong-Ng et al. supplementary material

Wong-Ng et al. supplementary material 4

Download Wong-Ng et al. supplementary material(File)
File 4.3 MB