Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T08:40:20.309Z Has data issue: false hasContentIssue false

Powder X-ray diffraction structural characterization of the coordination complex cis-[Co(κ2N,N′-1,10-phenanthroline-5,6-dione)2Cl2]

Published online by Cambridge University Press:  19 February 2018

José A. Fernandes
Affiliation:
Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, via Valleggio 11, 22100 Como, Italy
Olufunso Abosede
Affiliation:
Department of Chemistry, Federal University Otuoke, PMB 126, Yenagoa, Bayelsa State, Nigeria
Simona Galli*
Affiliation:
Dipartimento di Scienza e Alta Tecnologia, Università dell'Insubria, via Valleggio 11, 22100 Como, Italy
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The reduction of cis-[CoIII(κ2N,N-1,10-phenanthroline-5,6-dione)2Cl2]Cl into the neutral compound cis-[CoII(κ2N,N-1,10-phenanthroline-5,6-dione)2Cl2] was observed during developmental studies of new antimalarial drugs. The crystal structure of cis-[CoII(κ2N,N-1,10-phenanthroline-5,6-dione)2Cl2] was unveiled by powder X-ray diffraction studies (PXRD). PXRD details, unit cell parameters, and space group for cis-[CoII(κ2N,N-1,10-phenanthroline-5,6-dione)2Cl2], C24H12Cl2CoN4O4, are reported [a = 41.4951 (13) Å, b = 8.2768 (2) Å, c = 12.4994 (3) Å, unit cell volume V = 4292.9 (2) Å3, Z = 8, and space group Fdd2]. Infrared spectroscopy features are also discussed.

Type
New Diffraction Data
Copyright
Copyright © International Centre for Diffraction Data 2018 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Biot, C., Castro, W., Botté, C. Y., and Navarro, M. (2012). “The therapeutic potential of metal-based antimalarial agents: implications for the mechanism of action,” Dalton Trans. 41, 63356349.Google Scholar
Brechin, E. K., Calucci, L., Englert, U., Margheriti, L., Pampaloni, G., Pinzino, C., and Prescimone, A. (2008). “1,10-Phenanthroline-5,6-dione complexes of middle transition elements: mono- and dinuclear derivatives,” Inorg. Chim. Acta 361, 23752384.CrossRefGoogle Scholar
Brown, I. D. and Altermatt, D. (1985). “Bond-valence parameters obtained from a systematic analysis of the inorganic crystal structure database,” Acta Crystallogr., Sect. B: Struct. Sci. 41, 244247.Google Scholar
Calderazzo, F., Marchetti, F., Pampaloni, G. and Passarelli, V. (1999). “Coordination properties of 1,10-phenanthroline-5,6-dione towards group 4 and 5 metals in low and high oxidation states,” J. Chem. Soc. Dalton Trans. 43894396.Google Scholar
Chang, E. L., Simmers, C. and Knight, D. A. (2010). “Cobalt complexes as antiviral and antibacterial agents,” Pharmaceuticals 3, 17111728.Google Scholar
Cheary, R. W. and Coelho, A. A. (1992). “A fundamental parameters approach to X-ray line-profile fitting,” J. Appl. Crystallogr. 25, 109121.Google Scholar
Coelho, A. A. (2003). “Indexing of powder diffraction patterns by iterative use of singular value decomposition,” J. Appl. Crystallogr. 36, 8695.Google Scholar
Coelho, A. A. (2007). TOPAS-Academic, version 4.1 (Computer Software), Coelho Software, Brisbane.Google Scholar
Cogan, R. (2009) “Synthesis, Characterisation and Anti-Candida Activity of Inorganic and Organic Derivatives of 1,10-Phenanthroline,” (Master Thesis) Dublin Institute of Technology.Google Scholar
Dollase, W. A. (1986). “Correction of intensities for preferred orientation in powder diffractometry: application of the March model,” J. Appl. Crystallogr. 19, 267272.Google Scholar
Figueiras, C. A. L., Bomfim, J. A. S., Howie, R. A., Tiekink, E. R. T., and Wardell, J. L. (2009). “Di-chloridobis(1,10-phenanthroline-5,6-dione-κ2N,N′)mercury(II),” Acta Crystallogr. E 65, m1645.Google Scholar
Fujihara, T., Okamura, R., Wada, T., and Tanaka, K. (2003). “Coordination ability of 1,10-phenanthroline-5,6-dione: syntheses and redox behavior of a Ru(II) complex with an o-quinoid moiety and of bridged Ru(II)–M(II) complexes (M=Pd, Pt),” Dalton Trans. 32213226.Google Scholar
Goss, C. A. and Abruna, H. D. (1985). “Spectral, electrochemical, and electrocatalytic properties of 1,10-phenanthroline-5,6-dione complexes of transition metals,” Inorg. Chem. 24, 4263–4261.Google Scholar
Ghosh, S., Barve, A. C., Kumbhar, A. A., Kumbhar, A. S., Puranik, V. G., Datar, P. A., Sonawane, U. B., and Joshi, R. R. (2006). “Synthesis, characterization, X-ray structure and DNA photocleavage by cis-dichlorobis(diimine) Co(III) complexes,” J. Inorg. Biochem. 100, 331343.Google Scholar
Groom, C. R., Bruno, I. J., Lightfoot, M. P., and Ward, S. C. (2016). “The Cambridge structural database,” Acta Crystallogr. B 72, 171179.Google Scholar
Kawade, V. A., Ghosh, S., Sapre, A. V., and Kumbhar, A. S. (2010). “Pulse radiolytic studies on cis-dichlorobis(1,10-phenanthroline-5,6-dione)cobalt(III) complex,” J. Chem. Sci. 122, 225232.Google Scholar
Ma, Q., Zhu, M., Yuan, C., Feng, S., Lu, L., and Wang, Q. (2010). “A molecular helix: self-assembly of coordination polymers from d10 metal ions and 1,10-phenanthroline-5,6-dione (pdon) with the bridges of SCN and Cl anions,” Cryst. Growth. Des. 10, 17061714.Google Scholar
Mammo, M. and Shanshal, M. (1977) “Interaction of antimalarials with coenzyme Q10,” Z. Naturforsch. 33a, 5558.Google Scholar
McCann, M., Coyle, B., McKay, S., McCormack, P., Kavanagh, K., Devereux, M., McKee, V., Kinsela, P., O'Connor, R., and Clynes, M. (2004). “Synthesis and X-ray crystal structure of [Ag(phendio)2ClO4] (phendio=l,10-phenanthroline-5,6-dione) and its effects on fungal and mammalian cells,” Biometals 17, 635654.Google Scholar
March, A. (1932). “Mathematische theorie der regelungnach der korngestahbeiaffiner deformation,” Z. Krist. 81, 285297.Google Scholar
Navarro, M., Pérez, H., and Sánchez-Delgado, R. A. (1997). “Toward a novel metal-based chemotherapy against tropical diseases. 3. Synthesis and antimalarial activity in vitro and in vivo of the new gold-chloroquine complex [Au(PPh3)(CQ)]PF6 ,” J. Med. Chem. 40, 19371939.CrossRefGoogle Scholar
Navarro, M., Vásquez, F., Sánchez-Delgado, R. A., Pérez, H., Sinou, V., and Schrével, J. (2004). “Toward a novel metal-based chemotherapy against tropical diseases. 7. Synthesis and in vitro antimalarial activity of new gold-chloroquine complexes,” J. Med. Chem. 47, 52045209.Google Scholar
Navarro, M., Pekerar, S., and Pérez, H. A. (2007). “Synthesis, characterization and antimalarial activity of new iridium–chloroquine complexes,” Polyhedron 26, 24202424.Google Scholar
Navarro, M., Castro, W., Madamet, M., Amalvict, R., Benoit, N., and Pradines, B. (2014). “Metal-chloroquine derivatives as possible anti-malarial drugs: evaluation of anti-malarial activity and mode of action,” Malar. J. 13, 471.Google Scholar
Paw, W. and Eisenberg, R. (1997). “Synthesis, characterization, and spectroscopy of dipyridocatecholate complexes of platinum,” Inorg. Chem. 36, 22872293.Google Scholar
Poteet, S. A., Majewski, M. B., Breitbach, Z. S., Griffith, C. A., Singh, S. S., Armstrong, D. W., Wolf, M. O., and MacDonell, F. M. (2013). “Cleavage of DNA by proton-coupled electron transfer to a photoexcited, hydrated Ru(II) 1,10-phenanthroline-5,6-dione complex,” J. Am. Chem. Soc. 135, 24192422.Google Scholar
Rajapakse, C. S. K., Martínez, A., Naoulou, B., Jarzecki, A. A., Suárez, L., Deregnaucourt, C., Sinou, V., Schrével, J., Musi, E., Ambrosini, G., Schwartz, G. K., and Sánchez-Delgado, R. A. (2009). “Synthesis, characterization, and in vitro antimalarial and antitumor activity of new ruthenium(II) complexes of chloroquine,” Inorg. Chem. 48, 11221131.Google Scholar
Roy, S., Hagen, K. D., Maheswari, P. U., Lutz, M., Spek, A. L., Reedjk, J., and van Wezel, G. P. (2008). “Phenanthroline derivatives with improved selectivity as DNA-targeting anticancer or antimicrobial drugs,” ChemMedChem 3, 14271434.CrossRefGoogle ScholarPubMed
Salas, P. F., Herrmann, C., and Orvig, C. (2013). “Metalloantimalarials,” Chem. Rev. 113, 34503492.Google Scholar
Sánchez-Delgado, R. A., Navarro, M., Pérez, H., and Urbina, J. A. (1996). “Toward a novel metal-based chemotherapy against tropical diseases. 2. Synthesis and antimalarial activity in vitro and in vivo of new ruthenium and rhodium-chloroquine complexes,” J. Med. Chem. 39, 10951099.Google Scholar
Silva, T. F. S., Smoleński, P., Martins, L. M. D. R. S., Silva, M. F. C. G., Fernandes, A. R., Luís, D., Silva, A., Santos, S., Borralho, P. M., Rodrigues, C. M. P., and Pombeiro, A. J. L. (2013). “Cobalt and zinc compounds bearing 1,10-phenanthroline-5,6-dione or 1,3,5-triaza-7-phosphaadamantane derivatives – synthesis, characterization, cytotoxicity, and cell selectivity studies,” Eur. J. Inorg. Chem. 21, 36513658.Google Scholar
Stephenson, M. D. and Hardie, M. J. (2006). “Coordination and hydrogen bonded network structures of Cu(II) with mixed ligands: a hybrid hydrogen bonded material, an infinite sandwich arrangement, and a 3-D net,” Dalton Trans. 34073417.Google Scholar
Vlcek, A. A. (1967). “Preparation of Co(Dipy)2X2 + (X=Cl, Br, I, NO2 ) by controlled oxidative processes,” Inorg. Chem. 6, 14251427.Google Scholar
Viganor, L., Galdino, A. C. M., Nunes, A. P. F., Santos, K. R. N., Branquinha, M. H., Devereux, M., Kellett, A., McCann, M., and Santos, A. L. (2015). “Anti-pseudomonas aeruginosa activity of 1,10-phenanthroline-based drugs against both planktonic- and biofilm-growing cells,” J. Antimicrob. Chemother. 71, 128134.Google Scholar
World Health Organization (2015). “WHO Model List of Essential Medicines, 19th list (amended November 2015)” http://www.who.int/medicines/publications/essentialmedicines/en/.Google Scholar
World Health Organization (2016). “Malaria Fact Sheet (updated December 2016)” http://www.who.int/mediacentre/factsheets/fs094/en/.Google Scholar
Wu, X.-J. and Chen, Z.-R. (2014). “Two new low dimensional lead(II) diiodide complexes by introducing carbonyls on 1,10-phenanthroline: a combined experimental and theoretical study,” Chin. J. Struct. Chem. 33, 11641170.Google Scholar
Yamada, M., Tanaka, Y., Yoshimoto, Y., Kuroda, S., and Shimao, I. (1992) “Synthesis and properties of diamino-substituted dipyrido[3,2-a 2’,3’-c]phenazine,” bull. Chem. Soc. Jpn. 65, 10061011.Google Scholar
Young, R. A. (1981) The Rietveld Method, IUCr Monograph N. 5 (Oxford University Press, New York).Google Scholar
Supplementary material: File

Fernandes et al. supplementary material

Fernandes et al. supplementary material 1

Download Fernandes et al. supplementary material(File)
File 40 KB