Hostname: page-component-745bb68f8f-v2bm5 Total loading time: 0 Render date: 2025-01-26T01:44:06.087Z Has data issue: false hasContentIssue false

Powder diffraction refinement of the Co2Al5 structure

Published online by Cambridge University Press:  10 January 2013

U. Burkhardt
Affiliation:
Max-Planck-Institut für Metallforschung, Seestraße 75, D-70174 Stuttgart, Germany
M. Ellner
Affiliation:
Max-Planck-Institut für Metallforschung, Seestraße 75, D-70174 Stuttgart, Germany
Yu. Grin
Affiliation:
Max-Planck-Institut für Festkörperforschung, Heisenbergstraße 1, D-70569 Stuttgart, Germany
B. Baumgartner
Affiliation:
STOE Application Laboratory, Hilpertstraße 10, D-64295 Darmstadt, Germany

Abstract

The structure of Co2Al5 (hP28, P63/mmc) was refined by means of Rietveld method. The shortest Co–Al distance amounts 2.338 Å. Co2Al5 shows a homogeneity range between Co29Al71 and Co27.5Al72.5 at 1125 K. The concentration dependence of lattice parameters was also measured. The axial ratio c/a increases with increasing mole fraction of aluminum.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1998

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akselrud, L.G., Grin, Yu.N., Zavalii, P.Yu., Pecharski, V.K., and Fundamenski, V.S. (1989). “CSD — Universal Program Package for Single Crystal and/or Powder Structure Data Treatment,” in Twelfth European Crystallography Meeting, Collected Abstracts, Moscow 3, 155.Google Scholar
Black, P. J. (1955a). “The Structure of FeAl3. I.,” Acta Crystallogr. 8, 4348.CrossRefGoogle Scholar
Black, P. J. (1995b). “The Structure of FeAl3. II.,” Acta Crystallogr. 8, 175182.CrossRefGoogle Scholar
Bradley, A. J., and Cheng, C. S. (1938). “The Crystal Structure of Co2Al5,” Z. Kristallogr. A 99, 480487.See also PDF card 03-1080 which lists this data.CrossRefGoogle Scholar
Bradley, A. J., and Seager, G. C. (1937). “An X-ray Investigation of Cobalt Aluminium Alloys,” J. Inst. Met. 64, 8188.Google Scholar
Brunner, G. O., and Schwarzenbach, D. (1971). “Zur Abgrenzung der Koordinationssphäre und Ermittelung der Koordinationszahl in einer Kristallstruktur,” Z. Kristallogr. 133, 127133.CrossRefGoogle Scholar
Burkhardt, U., Grin, Yu., Ellner, M., and Peters, K. (1994). “Structure Refinement of the Iron-Aluminium Phase with the Approximate Composition Fe2Al5,Acta Crystallogr., Sect. B: Struct. Sci. 50, 313316.CrossRefGoogle Scholar
Burkhardt, U., Ellner, M., and Grin, Yu. (1996). “Powder diffraction data for the intermetallic compounds Co2Al5, Monoclinic m-Co4Al13 and orthorhombic o-Co4Al13,Powder Diffr. 11, 123128.CrossRefGoogle Scholar
Ellner, M., and Röhrer, T. (1990). “Zur Struktur der ternären Phase FeNiAl 5,Z. Metallkd. 81, 847849.Google Scholar
Edshammar, L.-E. (1967). “The crystal structure of hexagonal Rh2Al5,Acta Chem. Scand. 21, 647651.CrossRefGoogle Scholar
Ferro, R. (1960). “Ricerche Sulle Leghe dei Metalli Nobili gli Elementi Piu Electropositivi. IV. Le Fasi Gamma dei Sistemi Magnesio-Rodio e Magnesio-Palladio,” Atti Accad. Naz. Lincei Cl. Sci. Fis. Mat. Nat. 29, 7073.Google Scholar
Gödecke, T., and Ellner, M. (1996). “Phase equilibria of the aluminium-rich portion of the binary system Co-Al and in a cobalt/aluminium-rich portion of the ternary system Co-Ni-Al,” Z. Metallkd. 87, 854864.Google Scholar
Grin, J., Burkhardt, U., Ellner, M., and Peters, K. (1994a). “Refinement of the Fe4Al13 structure and its relationship to the quasihomological homeotypical structures,” Z. Kristallogr. 209, 479487.CrossRefGoogle Scholar
Grin, J., Burkhardt, U., Ellner, M., and Peters, K. (1994b). “Crystal structure of orthorhombic Co4Al13,J. Alloys Compd. 206, 243247.CrossRefGoogle Scholar
Gwyer, A. G. C. (1908). “Über die Legierungen des Aluminiums mit Kupfer, Eisen, Nickel, Kobalt, Blei und Cadmium,” Z. Anorg. Chem. 57, 113153.CrossRefGoogle Scholar
Markiv, V. Ya., and Belyavina, N. N. (1989). “Crystal structure of Sc6-xCoGa and Sc6-xNiGa (x = 0.6),” Dopov. Akad. Nauk. Ukr. RSR, Ser. A: Fiz.-Mat. Tekh. Nauki 51, 7578.Google Scholar
Newkirk, J. B., Black, P. J., and Damjanovic, A. (1961). “The refinement of the Co2Al5 structure,” Acta Crystallogr. 14, 532533.CrossRefGoogle Scholar
Pearson, W.B. (1972). The Crystal Chemistry and Physics of Metals and Alloys (Wiley-Interscience, New York), p. 547.Google Scholar
Schubert, K., Rösler, U., Kluge, M., Anderko, K., and Härle, L. (1953). “Kristallographische Ergebnisse an Phasen mit Durchdringungsbindung,” Naturwissenschaften 40, 437.Google Scholar
Schubert, K. (1964). Kristallstrukturen zweikomponentiger Phasen (Springer-Verlag, Berlin), p. 295 ff.Google Scholar
Wells, A.F. (1975). Structural Inorganic Chemistry (Clarendon, Oxford), p. 1047 ff.Google Scholar