Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2025-01-04T11:26:13.405Z Has data issue: false hasContentIssue false

Powder diffraction analysis of cerium dioxide at high pressure

Published online by Cambridge University Press:  10 January 2013

L. Gerward
Affiliation:
Physics Department, Building 307, Technical University of Denmark, DK-2800 Lyngby, Denmark
J. Staun Olsen
Affiliation:
Niels Bohr Institute, H. C. Oersted Laboratory, University of Copenhagen, DK-2100 Copenhagen, Denmark

Abstract

CeO2 transforms to an orthorhombic PbCl2-type structure at a pressure of about 31 GPa. The phase transition is accompanied by a 9.8% volume contraction. The bulk modulus of the low-pressure fluorite-type structure is 236(4) GPa. Comparisons are made with the high-pressure behaviour of UO2 and ThO2.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Anderson, O. L., and Nafe, J. E. (1965). J. Geophys. Res. 70, 39513963.CrossRefGoogle Scholar
Benedict, U., Andreetti, G. D., Fournier, J. M., and Waintal, A. (1982). J. Physique-Lettres 43, L171–L177.CrossRefGoogle Scholar
Benedict, U., Dufour, C., Spirlet, J. C., Olsen, J. S., and Gerward, L. (1983). Communication, 13th Journées des Actinides, Elat, Israel.Google Scholar
Benjamin, T. M., Zou, G., Mao, H. K., and Bell, P. M. (1981). Carnegie Inst. Yearbook 80, 280283.Google Scholar
Birch, F. (1938). J. Appl. Phys. 9, 279288 (1947).CrossRefGoogle Scholar
Phys. Rev. 71, 809824.CrossRefGoogle Scholar
Buras, B., and Gerward, L. (1989). Progr. Crystal Growth Charact. 18, 93138.CrossRefGoogle Scholar
Clark, S. M. (1992). Rev. Sci. Instrum. 63, 10101012.CrossRefGoogle Scholar
Dancausse, J.-P., Gering, E., Heathman, S., and Benedict, U. (1990). High Pressure Research 2, 381389.CrossRefGoogle Scholar
Duclos, S. J., Vohra, Y. K., Ruoff, A. L., Jayaraman, A., and Espinosa, G. P. (1988). Phys. Rev. B 38, 77557758.CrossRefGoogle Scholar
Jayaraman, A., Kourouklis, G. A., and Uitert, L. V. Van (1988). Pramana J. Phys. 30, 225228.CrossRefGoogle Scholar
Kelly, P. J., and Brooks, M. S. S. (1987). J. Chem. Soc, Faraday Trans. 2, 83, 1189.CrossRefGoogle Scholar
Kourouklis, G. A., Jayaraman, A., and Espinosa, G. P. (1988). Phys. Rev. B 37, 42504253.CrossRefGoogle Scholar
Macedo, P. M., Capps, W., and Wachtman, J. B. Jr., (1964). J. Am. Ceram. Soc. 47, 651.CrossRefGoogle Scholar
Mao, H. K., Bell, P. M., Shaner, J. W., and Steinberg, D. J. (1978). J. Appl. Phys. 49, 32763282.CrossRefGoogle Scholar
Murnaghan, F. D. (1951). Finite Deformation of an Elastic Solid (Wiley, New York).Google Scholar
Seifert, K.-F. (1968). Fortschr. Miner. 45, 214280.Google Scholar
Wachtman, J. B. Jr., Wheat, M. L., Anderson, H. J., and Bates, J. L. (1965). J. Nucl. Mater. 16, 32663269.CrossRefGoogle Scholar
Wyckoff, R. W. G. (1963). Crystal Structures (Interscience, New York), 2nd ed., Vol. 1, p. 298.Google Scholar