Hostname: page-component-cd9895bd7-q99xh Total loading time: 0 Render date: 2024-12-28T05:47:26.909Z Has data issue: false hasContentIssue false

Polymorphism of tricalcium silicate in Portland cement: A fast visual identification of structure and superstructure

Published online by Cambridge University Press:  05 March 2012

M. Courtial
Affiliation:
Laboratoire d’Artois Me´canique et Habitat, Universite´ d’Artois, route de l’Universite´ 62408 Be´thune, France
M.-N. de Noirfontaine
Affiliation:
Laboratoire des Solides Irradie´s, Ecole Polytechnique, 91128 Palaiseau Cedex, France, CTG, Ciments CALCIA–Italcementi Group, rue des Technodes, 78931 Guerville Cedex, France
F. Dunstetter
Affiliation:
Laboratoire des Solides Irradie´s, Ecole Polytechnique, 91128 Palaiseau Cedex, France
G. Gasecki
Affiliation:
CTG, Ciments CALCIA–Italcementi Group, rue des Technodes, 78931 Guerville Cedex, France
M. Signes-Frehel
Affiliation:
CTG, Ciments CALCIA–Italcementi Group, rue des Technodes, 78931 Guerville Cedex, France

Abstract

So-called alite is a solid solution of tricalcium silicate Ca3SiO5 with a few percent of impurities. It constitutes the major phase of anhydrous Portland cement. In industrial compounds, alite crystallizes into two monoclinic forms designated M1 and M3. The possibility of correlation between the crystallographic structure of the clinker and its reactivity is still an open question. The answer of such a question involves a proper quantitative analysis of the various phases—including the exact alite polymorph—of the industrial product. The rather similar structure of the two alites makes it difficult to distinguish them from their XRD patterns. This paper shows that five angular windows in the X-ray diffraction patterns can be used with synthetic alites as well as industrial compounds, to identify the nature of the actual polymorph (M1 or M3) present and the structural model to be used (with or without superstructure) in subsequent Rietveld analysis of the data.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bigare, M., Guinier, A., Mazieres, C., Regourd, M., Yannaquis, N., Eysel, W., Hahn, T., and Woermann, E. (1967). “Polymorphism of Tricalcium Silicate and its Solid Solutions,” J. Am. Ceram. Soc. JACTAW 50, 609619. jac, JACTAW CrossRefGoogle Scholar
Colville, A. A.and Geller, S. (1972). “The Crystal Structure of Ca2Fe1.43Al0.57O5 and Ca2Fe1.28Al0.72O5,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B28, 31963200. acb, ACBCAR CrossRefGoogle Scholar
de Noirfontaine, M.-N. (2000). “Etude structurale et cristallographie du compose´ majoritaire du ciment anhydre: le silicate tricalcique,” Ph.D. thesis, Ecole Polytechnique, France.Google Scholar
de Noirfontaine, M.-N., Courtial, M., Dunstetter, F., Gasecki, G., and Signes-Frehel, M. (2002). “Modelling of Alite, an Industrial Challenge: The Major Compound of Anhydrous Portland Cement Revisited,” Cem. Conc. Res., submitted.Google Scholar
Jost, K. H., Ziemer, B., and Seydel, R. (1977). “Redetermination of the structure of β-Dicalcium Silicate,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B33, 16961700. acb, ACBCAR CrossRefGoogle Scholar
Giacovazzo, C., Monaco, H. L., Viterbo, D., Scordari, F., Gilli, G., Zanoti, G., and Catti, M. (1995). Fundamentals of Crystallography, edited by C. Giacovazzo, Chap. 2, p. 111 (Oxford University Press, Oxford).Google Scholar
Guinier, A. and Regourd, M. (1969). “Structure of Portland Cement Minerals,” Proceedings of the 5th ISCC, Tokyo, Vol. 1, pp. 1–41.Google Scholar
International Tables for Crystallography (1995). Edited by Theo Hahn (Kluwer Academic, Berlin), Vol. A, Chap. 2, pp. 35–38.Google Scholar
Larson, A. C. and Von Dreele, R. B. (1988). “GSAS General Structure Analysis System,” Operational Manual, Los Alamos National Laboratory LAUR 86-748.Google Scholar
Maki, I.and Goto, K. (1982). “Factors Influencing the Phase Constitution of Alite in Portland Cement Clinker,” Cem. Concr. Res. CCNRAI 12, 301308. ccn, CCNRAI CrossRefGoogle Scholar
Mondal, P.and Jeffery, J. W. (1975). “The Crystal Structure of Tricalcium Aluminate, Ca3Al2O6,Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. ACBCAR B31, 689696. acb, ACBCAR CrossRefGoogle Scholar
Mumme, W. G. (1995). “Crystal Structure of Tricalcium Silicate from a Portland Cement Clinker and its Application to Quantitative XRD Analysis,” N. Jb. Miner. Mh. H. ZZZZZZ 4, 145160.Google Scholar
Nishi, F., Takeuchi, Y., and Maki, I. (1985). “The Tricalcium silicate Ca3O[SiO4]: the Monoclinic Superstructure,” Z. Kristallogr. ZEKRDZ 172, 297314. zek, ZEKRDZ CrossRefGoogle Scholar
Qing, Y., Jianmin, K., and Baoyuan, L. (1992). “Effect of Fluorite-Gypsum Composite Mineralizer on the Microstructure and Properties of Portland Cement Clinker Phase,” Proceedings of the 9th ICCC, New Delhi, Chap. 2, pp. 342–350.Google Scholar
Regourd, M. (1970). “Cristallographie des constituants du clinker de ciment Portland,” Bull. Liais. Labo. Routiers No. spe´cial 0, pp. 58–73.Google Scholar
Regourd, M. (1979). “Polymorphisme du silicate tricalcique. Nouvelles donne´es de la diffraction des rayons X,” C. R. Acad. Sci. URSS DANKAS 289, 1720. cqu, DANKAS Google Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr. JACGAR 2, 6571. acr, JACGAR CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1994). Note prepared for the Nordic Research Course “The Rietveld Method in Practice: the Program FULLPROF.”Google Scholar
Urabe, K., Nakano, H., and Morita, H. (2002). “Structural modulations in Monoclinic Tricalcium Silicate Solid Solutions Doped with Zinc Oxyde, M(I), M(II), and M(III),” J. Am. Ceram. Soc. JACTAW 85, 423429. jac, JACTAW CrossRefGoogle Scholar
Urabe, K., Shirakami, T., and Iwashima, M. (2000). “Superstructure in a Triclinic Phase of Tricalcium Silicate,” J. Am. Ceram. Soc. JACTAW 83, 12531258. jac, JACTAW CrossRefGoogle Scholar