Hostname: page-component-745bb68f8f-s22k5 Total loading time: 0 Render date: 2025-01-27T19:32:54.011Z Has data issue: false hasContentIssue false

New X-ray powder diffraction data for Mo2.85Al1.91Si4.81

Published online by Cambridge University Press:  01 March 2012

S. A. Tayebifard*
Affiliation:
Materials and Energy Research Center (MERC), Alvand Street, P.O. Box 14155-4777, Tehran, Iran
K. Ahmadi
Affiliation:
Materials and Energy Research Center (MERC), Alvand Street, P.O. Box 14155-4777, Tehran, Iran
R. Yazdani-Rad
Affiliation:
Materials and Energy Research Center (MERC), Alvand Street, P.O. Box 14155-4777, Tehran, Iran
M. Doroudian
Affiliation:
Materials and Energy Research Center (MERC), Alvand Street, P.O. Box 14155-4777, Tehran, Iran
*
a)Electronic mail: [email protected]

Abstract

X-ray powder diffraction data for Mo2.85Al1.91Si4.81 are reported. The new Mo2.85Al1.91Si4.81 compound was successfully prepared using the self-propagating high-temperature synthesis (SHS) technique. The starting atomic mixture of reactant powders was Mo+2(1−x)Si+2xAl with x=0.3. The final powder compound obtained by the SHS technique was determined to be Mo2.85Al1.91Si4.81 by ICP-AES. X-ray powder diffraction pattern of Mo2.85Al1.91Si4.81 was recorded using an X-ray powder diffractometer, Cu Kα radiation, and analyzed by automatic indexing programs. Mo2.85Al1.91Si4.81 was found to be hexagonal with a=4.6929(2) Å and c=6.5515(4) Å. The XRD results are in good agreement with those of Mo2.85Ga2Si4.15.

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Alman, D. E. and Govier, R. D. (1996). “Influence of Al additions on the reactive synthesis of MoSi2,” Scr. Mater. SCMAF7 34, 12871293.CrossRefGoogle Scholar
Andruszkiewicz, R. and Horyn, R. J. (1986). “The Mo–Ga–Si system and X-ray data for K-phase Mo2.85Ga2Si4.15 and A-phase Mo2.8Ga2Ge4.2. New superconductors of the CrSi2-type structure,” J. Less-Common Met. JCOMAH 119, 9197.CrossRefGoogle Scholar
Boutif, A. and Louër, D. (1991). “Indexing of powder diffraction patterns for low symmetry lattices by the successive dichtomy method,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889891006441 24, 987993.CrossRefGoogle Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr. JACGAR 10.1107/S002188986800508X 1, 108113.CrossRefGoogle Scholar
Evain, M. (1992). “U-FIT: A cell parameter refinement program,” I.M.N., de Nantes, France.Google Scholar
Fu, M. and Sekhar, J. A. (1998). “Processing, microstructure, and properties of molybdenum aluminosilicide,” J. Am. Ceram. Soc. JACTAW 81, 32053214.CrossRefGoogle Scholar
ICDD (1986). “Powder Diffraction File,” International Centre for Diffraction Data, edited by McClune, Frank, 12 Campus Boulevard, Newtown Square, PA 19073-3272.Google Scholar
Lee, J. H., Nersisyan, H. H., and Won, C. W. (2004). “The combustion synthesis of iron group metal fine powders,” J. Solid State Chem. JSSCBI 177, 251256.CrossRefGoogle Scholar
Ramberg, C. E. and Worrell, W. L. (2002). “Oxidation kinetics and composite scale formation in the system Mo(Si,Al)2,” J. Am. Ceram. Soc. JACTAW 85, 444452.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1979). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 10.1107/S002188987901178X 12, 6065.CrossRefGoogle Scholar
Smith, G. S. and Snyder, R. L. (1991). “F N: A criterion for rating powder diffraction patterns and evaluating the reliability of powder-pattern indexing,” J. Appl. Crystallogr. JACGAR 10.1107/S002188987901178X 12, 6065.CrossRefGoogle Scholar
Stergiou, A., Taskiropouls, P., and Brown, A. (1997). “The intermediate and high temperature oxidation behavior of Mo(Si1−x,Alx)2 intermetallic alloys,” Intermetallics IERME5 10.1016/S0966-9795(96)00068-4 5, 6981.CrossRefGoogle Scholar
Tabaru, T., Shobu, K., Sakamoto, M., and Hanada, S. (2004). “Effect of substitution of Al for Si on the lattice variations and thermal expantion of Mo(Si,Al)2,” Intermetallics IERME5 12, 3341.CrossRefGoogle Scholar
Tayebifard, S. A. (1999). M.S. thesis: “An investigation of the parameters affecting SHS,” Material and Energy Research Center, Tehran, p. 4.Google Scholar
Werner, P. E., Erikson, L., and Weslatahl, M. J. (1985). “A semi-exhausive trial-and-error power indexing program for all symmetries,” J. Appl. Crystallogr. JACGAR 10.1107/S0021889885010512 18, 367370.CrossRefGoogle Scholar
Yazdani-Rad, R., Tayebifard, S. A., and Doroudian, M. (2002). “Effect of preheating on SHS of MoSi2,” Int. J. Eng. Sci. IJESAN 13, 7378.Google Scholar
Yazdani-Rad, R., Tayebifard, S. A., and Doroudian, M. (2003). “Influence of compaction pressure and atmosphere on SHS of molybdenum disilicide,” Int. J. Eng. Sci. IJESAN 14, 5163.Google Scholar
Zhang, G.-J., Yue, X. M., and Watanabe, T. (1999). “Synthesis of Mo(Si,Al)2 alloy by reactive hot pressing at low temperature for a short time,” J. Mater. Sci. JMTSAS 34, 593597.CrossRefGoogle Scholar