Hostname: page-component-745bb68f8f-l4dxg Total loading time: 0 Render date: 2025-01-25T19:43:25.800Z Has data issue: false hasContentIssue false

Nanostructured kesterite (Cu2ZnSnS4) for applications in thermoelectric devices

Published online by Cambridge University Press:  17 April 2019

E. Isotta
Affiliation:
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
N. M. Pugno
Affiliation:
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy Laboratory of Bio-Inspired and Graphene Nanomechanics, Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy Ket-Lab, Edoardo Amaldi Foundation, Via del Politecnico snc, 00133 Rome, Italy School of Engineering and Materials Science, Queen Mary University of London, Mile End Road, E1-4NS London, United Kingdom
P. Scardi*
Affiliation:
Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123 Trento, Italy
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Kesterite (Cu2ZnSnS4, CZTS) powders were produced by reactive high-energy milling, starting from stoichiometric mixtures of the elemental components. CZTS forms fine crystals with a cubic structure, which evolves to the stable tetragonal form after thermal treatment. Tablets were produced by cold pressing of the ball milled powder, and sintered up to 660 °C. Seebeck coefficient, electrical resistivity, and thermal diffusivity were measured on the sintered tablets, pointing out the positive effect of CZTS nanostructure and of the rather large fraction of porosity: thermal conductivity is rather low (from ~0.8 W/(m K) at 20 °C to ~0.42 W/(m K) at 500 °C), while electrical conduction is not seriously hindered (electrical resistivity from ~8500 µΩ m at 40 °C to ~2000 µΩ m at 400 °C). Preliminary results of thermoelectric behavior are promising.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2019 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Azanza Ricardo, C. L., Su, M. S., Müller, M., and Scardi, P. (2013). “Production of Cu2(Zn,Fe)SnS4 powders for thin film solar cell by high energy ball milling,” J. Power Sources 230, 7075.Google Scholar
Azanza Ricardo, C. L., Girardi, F., Cappelletto, E., D'Angelo, R., Ciancio, R., Carlino, E., Ricci, P. C., Malerba, C., Mittiga, A., Di Maggio, R., and Scardi, P. (2015). “Chloride-based route for monodisperse Cu2ZnSnS4 nanoparticles preparation,” J. Renew. Sustain. Energy 7(4), 043150.Google Scholar
Bosson, C. J., Birch, M. T., Halliday, D. P., Knight, K. S., Gibbs, A. S., and Hatton, P. D. (2017). “Cation disorder and phase transitions in the structurally complex solar cell material Cu2ZnSnS4,” J. Mater. Chem. A 5(32), 1667216680.Google Scholar
Broseghini, M., Gelisio, L., D'Incau, M., Azanza Ricardo, C. L., Pugno, N. M., and Scardi, P. (2016). “Modeling of the planetary ball-milling process: the case study of ceramic powders,” J. Eur. Ceram. Soc. 36, 22052212.Google Scholar
Chmielowski, R., Bhattacharya, S., Jacob, S., Péré, D., Jacob, A., Moriya, K., Delatouche, B., Roussel, P., Madsen, G., and Dennler, G. (2017). “Strong reduction of thermal conductivity and enhanced thermoelectric properties in CoSbS(1-x)Sex paracostibite,” Sci. Rep. 7(1), 111.Google Scholar
Cox, J. D., Wagman, D. D., and Medvedev, V. A. (1984). CODATA Key Values for Thermodynamics. (Hlemisphere Publishing Corp., New York), p. 1.Google Scholar
Devi Sharma, S., and Neeleshwar, S. (2018). “Thermoelectric properties of hot pressed CZTS micro spheres synthesized by microwave method,” Mater. Res. Soc. Adv. 3, 13731378.Google Scholar
Guo, B. L., Chen, Y. H., Liu, X. J., Liu, W. C., and Li, A. D. (2014). “Optical and electrical properties study of sol-gel derived Cu2ZnSnS4 thin films for solar cells,” AIP. Adv. 4(9), 097115.Google Scholar
Kumar, S., Ansari, M. Z., and Khare, N. (2017). “Enhanced thermoelectric power factor of Cu2ZnSnS4 in the presence of Cu(2-x)S and SnS2 secondary phase,” AIP Conf. Proc. 1832, 14.Google Scholar
Kumar, S., Ansari, M. Z., and Khare, N. (2018). “Influence of compactness and formation of metallic secondary phase on the thermoelectric properties of Cu2ZnSnS4 thin films,” Thin Solid Films 645, 300304.Google Scholar
Liu, M. L., Huang, F. Q., Chen, L. D., and Chen, I. W. (2009). “A wide band-gap p-type thermoelectric material based on quaternary chalcogenides of Cu2ZnSnQ4(Q=S,Se),” Appl. Phys. Lett. 94(20), 202103.Google Scholar
Liu, F. S., Zheng, J. X., Huang, M. J., He, L. P., Ao, W. Q., Pan, F., and Li, J. Q. (2015). “Enhanced thermoelectric performance of Cu2CdSnSe4 by Mn doping: experimental and first principles studies,” Sci. Rep. 4(1), 5774.Google Scholar
Oersted, H. C. (1823). “Nouvelles expériences de M. Seebeck sur les actions électro-magnetiques [New experiments by Mr. Seebeck on electro-magnetic actions],” Annales de chimie. 2nd series (in French) 22, 199201.Google Scholar
Peltier, J. C. H. (1834). “Nouvelles expériences sur la caloricité des courants électrique [New experiments on the heat effects of electric currents],” Annales de Chimie et de Physique (in French) 56, 371386.Google Scholar
Poudel, B., Hao, Q., Ma, Y., Lan, Y., Minnich, A., Yu, B., Yan, X., Wang, D., Muto, A., Vashaee, D., Chen, X., Liu, J., Dresselhaus, M. S., Chen, G., and Ren, Z. (2008). “High-Thermoelectric performance of nanostructured bismuth antimony telluride bulk alloys,” Science 320(5876), 634638.Google Scholar
Rowe, D. M. (2012). Thermoelectrics and its Energy Harvesting (CRC Press, Boca Raton, FL).Google Scholar
Scardi, P. (2008). “Microstructural properties: lattice defects and domain size effects”, Chap. 13 in Powder Diffraction: Theory and Practice (The Royal Society of Chemistry, Cambridge), pp. 376413.Google Scholar
Scardi, P., and Leoni, M. (2002). “Whole powder pattern modelling,” Acta Cryst. A: Foundations Crystallogr. 58(2), 190200.Google Scholar
Scardi, P., Azanza Ricardo, C. L., Perez Demydenko, C., and Coelho, A. A. (2018). “WPPM macros for TOPAS,” J. Appl. Crystallogr. 51, 114.Google Scholar
Schorr, S. (2011). “The crystal structure of kesterite type compounds: a neutron and X-ray diffraction study,” Sol. Energy Mater. Sol. Cells 95(6), 14821488.Google Scholar
Schorr, S., and Gonzalez-Aviles, G. (2009). “In-situ investigation of the structural phase transition in kesterite,” Phys. Status Solidi (A) Appl. Mater. Sci. 206(5), 10541058.Google Scholar
Seebeck, T. J. (1826). “Ueber die magnetische Polarisation der Metalle und Erze durch Temperaturdifferenz [Magnetic polarization of metals and ores by temperature differences],” Abhandlungen der Koniglichen Akademie der Wissenschaften zu Berlin (in German) 82, 265373.Google Scholar
Skelton, J. M., Jackson, A. J., Dimitrievska, M., Wallace, S. K., and Walsh, A. (2015). “Vibrational spectra and lattice thermal conductivity of kesterite-structured Cu2ZnSnS4 and Cu2ZnSnSe4,” APL Mater. 041102(3), 16.Google Scholar
Venkatasubramanian, R., Siivola, E., Colpitts, T., and O'Quinn, B. (2001). “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature 413(6856), 597602.Google Scholar
Xie, W., Tang, X., Yan, Y., Zhang, Q., and Tritt, T. M. (2009). “High thermoelectric performance of BiSbTe alloy with unique low-dimensional structure,” J. Appl. Phys. 105(11), 113713.Google Scholar
Yang, H., Jauregui, L. A., Zhang, G., Chen, Y. P., and Wu, Y. (2012). “Nontoxic and abundant copper zinc tin sulfide nanocrystals for potential high-temperature thermoelectric energy harvesting,” Nano Lett. 12(2), 540545.Google Scholar
Zeier, W. G. (2017). “New tricks for optimizing thermoelectric materials,” Curr. Opin. Green Sustain Chem. 4, 2328.Google Scholar
Zhao, X. B., Yang, S. H., Cao, Y. Q., Mi, J. L., Zhang, Q., and Zhu, T. J. (2009). “Synthesis of nanocomposites with improved thermoelectric properties,” J. Electron. Mater. 38(7), 10171024.Google Scholar
Zhou, W., Shijimaya, C., Takahashi, M., Miyata, M., Mott, D., Koyano, M., Ohta, M., Akatsuka, T., Ono, H., and Maenosono, S. (2017). “Sustainable thermoelectric materials fabricated by using Cu2Sn(1-x)ZnxS3 nanoparticles as building blocks,” Appl. Phys. Lett. 111(26), 263105:15.Google Scholar