Hostname: page-component-cd9895bd7-gbm5v Total loading time: 0 Render date: 2024-12-18T14:15:51.051Z Has data issue: false hasContentIssue false

Microstrain accumulation in multiphase superalloys

Published online by Cambridge University Press:  06 March 2012

J. Repper
Affiliation:
Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, D-85747 Garching, Germany
M. Hofmann
Affiliation:
Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, D-85747 Garching, Germany
C. Krempaszky
Affiliation:
Christian-Doppler-Labor für Werkstoffmechanik von Hochleistungslegierungen, TU München, D-85747 Garching, Germany
R. C. Wimpory
Affiliation:
Helmholtz-Zentrum Berlin für Materialien und Energie, D-14109 Berlin Wannsee, Germany
W. Petry
Affiliation:
Forschungsneutronenquelle Heinz Maier-Leibnitz (FRM II), TU München, D-85747 Garching, Germany
E. Werner
Affiliation:
Lehrstuhl für Werkstoffkunde und Werkstoffmechanik, TU München, D-85747 Garching, Germany

Abstract

Four matrix-phase crystallographic directions of IN718 are investigated by in situ tensile tests using neutron diffraction. The elastic diffraction constants for all directions measured are compared to theoretical values calculated by the Kröner model. The differences between the microscopic and the macroscopic material response are given. The accumulation of microstrains in the different crystallographic directions is discussed. A comparison between the results of a single phase material (ingot IN718) and two differently thermal treated multiphase materials is presented.

Type
Applications Of Residual Stress Analysis
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Behnken, H. (2003). Mikrospannungen in vielkristallinen und heterogenen Werkstoffen, Habilitationsschrift (Shaker-Verlag, Aachen).Google Scholar
Bürgel, R. (1991). Handbuch Hochtemperatur-Werkstofftechnik (Vieweg, Wiesbaden).Google Scholar
Durand-Charre, M. (1997). The Microstructure of Superalloys (Gordon and Breach Science Publishers, Amsterdam).Google Scholar
Dye, D., Stone, H. J., and Reed, R. C. (2001). “Intergranular and interphase microstresses,” Curr. Opin. Solid State Mater. Sci.COSSFX 5, 3137.10.1016/S1359-0286(00)00019-XCrossRefGoogle Scholar
Holden, T. M., Holt, R. A., and Clarke, A. P. (1998). “Intergranular stains in Inconel-600 and the impact on interpreting stress fields in bent steam-generator tubing,” Mater. Sci. Eng., AMSAPE3 246, 180198.10.1016/S0921-5093(97)00732-6CrossRefGoogle Scholar
Hutchings, M. T., Withers, P. J., Holden, T. M., and Lorentzen, T. (2005). Introduction to the Characterization of Residual Stress by Neutron Diffraction (Taylor & Francis, Boca Raton).Google Scholar
Kröner, E. (1958). “Berechnung der elastischen Konstanten des Vielkristalls aus den Konstanten des Einkristalls,” Z. Phys.ZEPYAA 151, 504518.10.1007/BF01337948CrossRefGoogle Scholar
Wern, H., Johannes, R., and Walz, H. (1998). “Dependence of the X-ray elastic constants on the diffraction plane,” Phys. Status Solidi BPSSBBD 206, 545557.10.1002/(SICI)1521-3951(199804)206:2<545::AID-PSSB545>3.0.CO;2-J3.0.CO;2-J>CrossRefGoogle Scholar
Wimpory, R. C., Mikula, P., Saroun, J., Poeste, T., Li, J., Hofmann, M., and Schneider, R. (2008). “Efficiency boost of the materials science diffractometer E3 at BENSC: One order of magnitude due to a horizontally and vertically focusing monochromator,” Neutron NewsNTNEEJ 19, 1619.10.1080/10448630701831995CrossRefGoogle Scholar