Hostname: page-component-745bb68f8f-hvd4g Total loading time: 0 Render date: 2025-01-11T22:44:55.524Z Has data issue: false hasContentIssue false

Micro X-ray flourescence instrument developed in combination with atomic force microscope

Published online by Cambridge University Press:  01 March 2012

K. Tsuji*
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
T. Emoto
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
Y. Matsuoka
Affiliation:
Department of Applied Chemistry, Graduate School of Engineering, Osaka City University, 3-3-138 Sugimoto, Sumiyoshi-ku, Osaka 558-8585, Japan
Y. Miyatake
Affiliation:
Unisoku Co., 2-4-3 Kasugano, Hirakata 594-1111, Japan
T. Nagamura
Affiliation:
Unisoku Co., 2-4-3 Kasugano, Hirakata 594-1111, Japan
X. Ding
Affiliation:
Institute of Low Energy Nuclear Physics, Beijing Normal University, No. 19, Xin Jie Kou Wai Da Jie, Beijing 100875, China
*
a)Electronic mail: [email protected]

Abstract

A new micro-X-ray flourescence (XRF) instrument was developed in combination with an atomic force microscope (AFM). A small pinhole of 5 or 10 μm was made on the AFM cantilever. The center of the micro-X-ray beam generated by a polycapillary X-ray lens was passed through the pinhole. The present experiment demonstrated that the size of the original X-ray beam of 48 μm produced by the polycapillary lens was reduced to about 10 μm. This instrument enables both observation of the surface morphology by the AFM and elemental analysis by micro-XRF.

Type
XRD Instrumentation and Techniques
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Adams, F., Janssens, K., and Snigirev, A. (1998). J. Anal. At. Spectrom. JASPE2 10.1039/a707100k 13, 319.Google Scholar
Emoto, T., Sato, Y., Konishi, Y., Ding, X., and Tsuji, K. (2004). Spectrochim. Acta, Part B SAASBH 10.1016/j.sab.2004.05.016 59, 1291.CrossRefGoogle Scholar
Gao, N. and Ponomarev, I. Y. (2003). X-Ray Spectrom. XRSPAX 10.1002/xrs.599 32, 186.Google Scholar
Gao, N., Ponomarev, I. Yu., Xiao, Q. F., Gibson, W. M., and Carpenter, D. A. (1996). Appl. Phys. Lett. APPLAB 10.1063/1.117994 69, 1529.Google Scholar
Kumakhov, M. A. (1990). Nucl. Instrum. Methods Phys. Res. B NIMBEU 10.1016/0168-583X(90)90123-C 48, 283.Google Scholar
Morita, S., Wiesendanger, R., and Meyer, E. (2002). Noncontact Atomic Force Microscopy (Springer, New York).Google Scholar
Sato, S., Tsuji, K., and Hirokawa, K. (1996). Appl. Phys. A: Mater. Sci. Process. APAMFC 10.1007/s003390050271 62, 87.CrossRefGoogle Scholar
Simionovici, A., Schroer, C., and Lengeler, B. (2004). “Paraboloc compound refractive X-ray lenses” and Adams, F., Vincze, L., and Vekemans, B. (2004). “Synchrotron radiation for microscopic X-ray fluorescence analysis,” in X-ray Spectrometry: Recent Technological Advances, edited by Tsuji, K., Injuk, J., and Van Grieken, R. (Wiley, New York), pp. 111132 and 343353.Google Scholar
Tsuji, K. (2004). X-ray Spectrometry: Recent Technological Advances, edited by Tsuji, K., Injuk, J., and Van Grieken, R. (Wiley, New York), pp. 293305.Google Scholar
Tsuji, K. and Delalieux, F. (2002). J. Anal. At. Spectrom. JASPE2 10.1039/b204154p 17, 1405.Google Scholar
Tsuji, K., Hasegawa, Y., Wagatsuma, K., and Sakurai, T. (1998b). Jpn. J. Appl. Phys., Part 2 JAPLD8 10.1143/JJAP.37.L1271 37, L1271.Google Scholar
Tsuji, K. and Hirokawa, K. (1996). Rev. Sci. Instrum. RSINAK 10.1063/1.1147061 67, 3573.Google Scholar
Tsuji, K. and Hirokawa, K. (1995). Jpn. J. Appl. Phys., Part 2 JAPLD8 10.1143/JJAP.34.L1506 34, L1506.Google Scholar
Tsuji, K. and Hirokawa, K. (1994). J. Appl. Phys. JAPIAU 10.1063/1.356673 75, 7189.CrossRefGoogle Scholar
Tsuji, K., Nagamura, T., and Wagatsuma, T. (1998a). Jpn. J. Appl. Phys., Part 1 JAPNDE 37, 2028.Google Scholar
Tsuji, K., Spolnik, Z., and Wagatsuma, K. (2001). Spectrochim. Acta, Part B SAASBH 10.1016/S0584-8547(01)00347-0 56, 2497.CrossRefGoogle Scholar
Tsuji, K., Wagatsuma, K., and Hirokawa, K. (1997). Spectrochim. Acta, Part B SAASBH 10.1016/S0584-8547(96)01668-0 52, 855.Google Scholar
Tsuji, K., Wagatsuma, K., and Oku, T. (2000). X-Ray Spectrom. XRSPAX 10.1002/(SICI)1097-4539(200003/04)29:2<155::AID-XRS403>3.0.CO;2-K 29, 155.3.0.CO;2-K29,+155.>Google Scholar
Tsuji, K., Wagatsuma, K., Sugiyama, K., Hiraga, K., and Waseda, Y. (1999). Surf. Interface Anal. SIANDQ 10.1002/(SICI)1096-9918(199903)27:3<132::AID-SIA491>3.3.CO;2-4 27, 132135.3.0.CO;2-D>CrossRef3.3.CO;2-427,+132–135.>Google Scholar
Wang, L., Rath, B. K., Gibson, W. M., Kimball, J. C., and MacDonald, C. A. (1996). J. Appl. Phys. JAPIAU 10.1063/1.363309 80, 3628.Google Scholar
Yiming, Y. and Xunliang, D. (1993). Nucl. Instrum. Methods Phys. Res. B NIMBEU 52, 126.Google Scholar