Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T12:38:03.015Z Has data issue: false hasContentIssue false

Metal hydride formation in palladium and palladium rich intermetallic compounds studied by in situ neutron diffraction

Published online by Cambridge University Press:  14 November 2013

H. Kohlmann*
Affiliation:
Institute of Inorganic Chemistry, Leipzig University, Leipzig, Germany
N. Kurtzemann
Affiliation:
Institute of Inorganic Solid State Chemistry, Saarland University, Saarbrücken, Germany
T. C. Hansen
Affiliation:
Institut Laue-Langevin, Grenoble, France
*
*Correspondence author, [email protected], +49 341 97 36201

Abstract

In order to investigate the hydrogenation of intermetallic compounds, a gas pressure cell for in situ neutron powder diffraction based on a sapphire crystal tube was constructed. By proper orientation of the single crystal Bragg peaks of the container material can be avoided, resulting in a very low diffraction background. Using a laser heating and gas pressure controller, the hydrogenation (deuteration) of palladium and palladium rich intermetallics was studied in real time up to 8 MPa gas pressure and 700 K. Crystal structure parameters of palladium deuterides could be obtained under various deuterium gas pressures, corresponding to compositional ranges of 0.04≤x≤0.11 for the α-phase and 0.52≤x≤0.72 for the β-phase at 446 K. In situ neutron powder diffraction of the deuteration of a thallium lead palladium intermetallic Tl1-xPbxPd3 shows two superstructures of the cubic closest packing (ccp) to transform independently into a AuCu3 type structure. This proves a direct reaction to the deuterium filled AuCu3 type structure instead of a reaction cascade involving different ccp superstructures and thus gives new insights into the reaction pathways of palladium rich intermetallic compounds.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bogdanova, A. N. (2006). “Neutron Diffraction Study of Phase Transitions in Highly Concentrated Hydrogen Solid Solutions ZrV2D x (4<x<5),” Phys. Solid State 48, 13511355.Google Scholar
Eberle, U., Felderhoff, M. and Schüth, F. (2009). “Chemische und physikalische Lösungen für die Speicherung von Wasserstoff,” Angew. Chem. 121, 67326757.Google Scholar
Filinchuk, Y., Chernyshov, D. and Dmitriev, V. (2008). “Light metal borohydrides: crystal structures and beyond,” Z. Kristallogr. 223, 649659.Google Scholar
Flanagan, T. B. and Oates, W. A. (1991). “The palladium-hydrogen system,” Annu. Rev. Mater. Sci. 21, 269304.Google Scholar
Goncharenko, I. N., Glazkov, V. P., Irodova, A. V., Lavrova, O. A. and Somenkov, V. A. (1992). “Compressibility of dihydrides of transition metals,” J. Alloys Compd. 179, 253257.CrossRefGoogle Scholar
Graetz, J. (2009). “New approaches to hydrogen storage,” Chem. Soc. Rev. 38, 7382.Google Scholar
Gray, E., Mac, A., Smith, R. I. and Pitt, M. P. (2007). “Time-of-flight neutron powder diffraction with a thick-walled sample cell,” J. Appl. Crystallogr. 40, 399408.Google Scholar
Hansen, T. C., Henry, P. F., Fischer, H. E., Torresgrossa, J. and Convert, P. (2008). “The D20 instrument at the ILL: a versatile high-intensity two-axis neutron diffractometer,” Meas. Sci. Technol. 19, 034001.Google Scholar
Kohlmann, H. (2009). “Structural relationships in complex hydrides of the late transition metals,” Z. Kristallogr. 224, 454460.Google Scholar
Kohlmann, H., Fauth, F., Fischer, P., Skripov, A. V. and Yvon, K. (2001). “Low-temperature deuterium ordering in the cubic Laves phase derivative α-ZrCr2D0.66 ,” J. Alloys Compd. 327, L4-L9.Google Scholar
Kohlmann, H., Kurtzemann, N., Weihrich, R. and Hansen, T. (2009a). “In situ neutron powder diffraction on intermediate hydrides of MgPd3 in a novel sapphire gas pressure cell,” Z. Anorg. Allg. Chem. 635, 23992405.CrossRefGoogle Scholar
Kohlmann, H., Müller, F., Stöwe, K., Zalga, A. and Beck, H. P. (2009b). “Hydride formation in the intermetallic compounds CePd3 and CeRh3 ,” Z. Anorg. Allg. Chem. 635, 14071411.Google Scholar
Kohlmann, H. and Ritter, C. (2009). “Reaction Pathways in the Formation of Intermetallic InPd3 Polymorphs,” Z. Anorg. Allg. Chem. 635, 15731579.Google Scholar
Kohlmann, H., Skripov, A. V., Solonin, A. V. and Udovic, T. J. (2010). “The anti-perovskite type hydride InPd3H0.89 ,” J. Solid State Chem. 183, 24612465.Google Scholar
Kohlmann, H. and Yvon, K. (2000). “Revision of the low-temperature structures of rhombohedral ZrCr2Dx (x~3.8), and monoclinic ZrV2Dx (1.1<x<2.3) and HfV2Dx (x~1.9),” J. Alloys Compd. 309, 123126.Google Scholar
Kohlmann, H., Zhao, Y., Nicol, M. F. and McClure, J. (2008). “The crystal structure of α-MgD2 under high pressure by neutron powder diffraction,” Z. Kristallogr. 223, 706710.Google Scholar
Kuhs, W. F., Hensel, E. and Bartels, H. (2005). “Gas pressure cells for elastic and inelastic neutron scattering,” J. Phys.: Condens. Matter 17, S3009-S3015.Google Scholar
Kunkel, N., Sander, J., Louis, N., Pang, Y., Dejon, L. M., Wagener, F., Zang, Y. N., Sayede, A., Bauer, M., Springborg, M. and Kohlmann, H. (2011). “Theoretical investigation of the hydrogenation induced atomic rearrangements in palladium rich intermetallic compounds MPd3 (M=Mg, In, Tl),” Eur. Phys. J. B 82, 16.CrossRefGoogle Scholar
Kurtzemann, N., Kohlmann, H. (2010). “Crystal Structure and Formation of TlPd3 and its new Hydride TlPd3H,” Z. Anorg. Allg. Chem. 636, 10321037.Google Scholar
Latroche, M., Paul-Boncour, V., Percheron-Guégan, A. and Bourée-Vignon, F. (1998). “Temperature dependence study of YMn2D4.5 by means of neutron powder diffraction,” J. Alloys Compd. 274, 5964.Google Scholar
Önnerud, P., Andersson, Y., Tellgren, R., Norblad, P., Bourée, F. and André, G. (1997). “The Crystal and Magnetic Structures of Ordered Cubic Pd3MnD0.7 ,” Solid State Commun. 101, 433437.Google Scholar
Rodriguez-Carvajal, J. (2011). FULLPROF 2.k, version 5.2, Jul2011-ILL (Computer Software) JRC, Grenoble.Google Scholar
Rondinone, A. J., Jones, C. Y., Marshall, S. L., Chakoumakos, B. C., Rawn, C. J. and Lara-Curizo, E. (2003). “A Single-Crystal Sapphire Cell for in situ Neutron Diffraction Study of Gas-Hydrate,” Can. J. Phys. 81, 381385.Google Scholar
Schwarz, D. S., Yelon, W. B., Berliner, R. R., Lederich, R. J. and Sastry, S. M. L. (1991). “A novel hydride phase in hydrogen charged Ti3Al,” Acta Metall. Mater. 39, 27992803 Google Scholar
Storms, E. (1998). “Formation of β-PdD containing high deuterium concentration using electrolysis of heavy-water,” J. Alloys Compd. 268, 8999.CrossRefGoogle Scholar
Tellgren, R., Andersson, Y., Goncharenko, I., André, G., Bourée, F. and Mirebeau, I. (2001). “High-Pressure Neutron Diffraction Studies of the Magnetic Structures of Cubic Pd3MnD0.7 ,” J. Solid State Chem. 161, 9396.Google Scholar
Ting, V. P., Henry, P. F., Kohlmann, H., Wilson, C. C. and Weller, M. T. (2010). “Structural isotope effects in metal hydrides and deuterides,” Phys. Chem. Chem. Phys. 12, 20832088.Google Scholar
Vennström, M., Grechnev, A., Eriksson, O. and Andersson, Y. (2004). “Phase relations in the Ti3Sn-D system,” J. Alloys Compd. 364, 127131.Google Scholar
Weller, M. T., Henry, P. F., Ting, V. P. and Wilson, C. C. (2008). “Crystallography of hydrogen-containing compounds: realizing the potential of neutron powder diffraction,” Chem. Commun. (Cambridge, U. K.), 29732989.Google Scholar
Widenmeyer, M., Niewa, R., Hansen, T. C., and Kohlmann, H. (2013). “ In situ Neutron Diffraction as a Probe on Formation and Decomposition of Nitrides and Hydrides: A Case Study,” Z. Anorg. Allg. Chem. 639, 285295.Google Scholar
Winter, C. J. (2009). “Hydrogen energy - Abundant, efficient, clean: A debate over the energy-system-of-change,” Int. J. Hydrogen Energy 34, S1S52.CrossRefGoogle Scholar
Wu, E., Kennedy, S. J., Kisi, E. H., Mac, A., Gray, E. and Kennedy, B. J. (1995). “Neutron powder diffraction study of deuterium ordering in β phase Pd-D at low temperatures,” J. Alloys Compd. 231, 108114.CrossRefGoogle Scholar
Yamaguchi, S., Ohashi, M., Kajitani, T., Aoki, K., and Ikeda, S. (1997). “Distribution of hydrogen atoms in YPd3Hx studied by neutron diffraction and inelastic neutron scattering,” J. Alloys Compd. 253-254, 308312.Google Scholar
Yartys, V. A., Denys, R. V., Maehlen, J. P., Webb, C. J., Gray, E., Mac, A., Blach, T., Poletaev, A. A., Solberg, J. K. and Isnard, O. (2010). “Nanostructured Metal Hydrides for Hydrogen Storage Studied by In Situ Synchrotron and Neutron Diffraction,” Mater. Res. Soc. Symp. Proc. 1262, W04-01.CrossRefGoogle Scholar
Züttel, A. (2004). “Hydrogen storage methods,” Naturwissenschaften 91, 157172.Google Scholar