Hostname: page-component-586b7cd67f-t7czq Total loading time: 0 Render date: 2024-11-24T06:22:29.175Z Has data issue: false hasContentIssue false

Luminescent properties of Eu3+-doped SmBa3B9O18

Published online by Cambridge University Press:  24 May 2013

Ming He
Affiliation:
Department of Physics, Dalian Jiaotong University, Dalian 116028, China
Z.H. Zhang*
Affiliation:
Liaoning Key Materials Laboratory for Railway, School of Materials Science and Engineering, Dalian Jiaotong University, Dalian 116028, China
Y.Z. Zhu
Affiliation:
Department of Physics, Dalian Jiaotong University, Dalian 116028, China
Y.G. Tang
Affiliation:
Department of Physics, Dalian Jiaotong University, Dalian 116028, China
Z. Song
Affiliation:
Department of Physics, Dalian Jiaotong University, Dalian 116028, China
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

Eu3+-doped SmBa3B9O18 luminescent materials were synthesized by high temperature solid state reactions. The structure and photoluminescence properties of Sm(1−x)EuxBa3B9O18 (x = 0.2, 0.4, and 0.6) were investigated by X-ray diffraction, scanning electron microscopy, energy dispersive X-ray spectroscopy, and photoluminescence spectra. The results show that doping of Eu3+ ions does not change the structure of SmBa3B9O18. The luminescence is mainly the characteristic Eu3+ ion luminescence. No concentration quenching processes occur with the increment of Eu3+ concentration. The work implies that SmBa3B9O18 is a potential host material and europium-doped SmBa3B9O18 may find application in display and optical devices.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aloui-Lebbou, O., Goutaudier, C., Kubota, S., Dujardin, C., Cohen-Adad, M., Pedrini, C., Florian, P., and Massiot, D. (2001). “Structural and scintillation properties of new Ce3+-doped alumino-borate,” Opt. Mater. 16, 7786.CrossRefGoogle Scholar
Cai, G. M., He, M., Chen, X. L., Wang, W. Y., Lou, Y. F., Chen, H. H., and Zhao, J. T. (2007). “Crystal structure and luminescence properties of a novel promising phosphor Ba3ScB9O18,” Powder Diffr. 22, 328333.CrossRefGoogle Scholar
Ding, H., Sun, J., Liu, W., Meng, Q., and Lu, S. (2011). “Effect of Sm3+ doping on structural and luminescent properties of CaMoO4:Eu3+,” Chinese J. Lumin. 32, 456561.CrossRefGoogle Scholar
Dotsenko, V. P., Berezovskaya, I. V., Efryushina, N. P., Voloshinovskii, A. S., and Stryganyuk, G. B. (2010). “Luminescence properties and electronic structure of Sm3+-doped YAl3B4O12,” J. Mater. Sci. 45, 14691472.CrossRefGoogle Scholar
Fonger, W. H. and Struck, C. W. (1970). “Eu5+3D resonance quenching to the charge-transfer states in Y2O2S, La2O2S, and LaOC,” J. Chem. Phys. 52, 63646372.CrossRefGoogle Scholar
Hartman, P. (1956). “An approximate calculation of attachment energies for ionic crystals,” Acta Crystallogr. 9, 569572.CrossRefGoogle Scholar
Hartman, P. and Perdok, W. G. (1955). “On the relations between structure and morphology of crystals. III,” Acta Crystallogr. 8, 525529.CrossRefGoogle Scholar
He, M., Chen, X. L., Lan, Y. C., Li, H., and Xu, Y. P. (2001). “Ab initio structure determination of new compound LiAlB2O5,” J. Solid State Chem. 156, 181184.CrossRefGoogle Scholar
He, M., Chen, X. L., Okudear, H., and Simon, A. (2005). “(K1−xNax)2Al2B2O7 with 0 ≤ x < 0.6: a promising nonlinear optical crystal,” Chem. Mater. 17, 21932196.CrossRefGoogle Scholar
Huang, J., Zhou, L., Pang, Q., Gong, F., Sun, J., and Wang, W. (2009). “Photoluminescence properties of a novel phosphor CaB2O4:Eu3+ under NUV excitation,” Luminescence 24, 363366.CrossRefGoogle ScholarPubMed
Kodaira, C. A., Brito, H. F., and Felinto, M. C. F. C. (2003). “Luminescence investigation of Eu3+ ion in the RE2(WO4)3 matrix (RE = La and Gd) produced using the Pechini method,” J. Solid State Chem. 171, 401407.CrossRefGoogle Scholar
Li, X. Z., Wang, C., Chen, X. L., Li, H., Jia, L. S., Wu, L., and Du, Y. X. (2005). “Syntheses, thermal stability and structure determination of the novel isostructural RBa3B9O18 (R = Y, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb),” Inorg. Chem. 43, 85558560.CrossRefGoogle Scholar
Li, X., Chen, B., and Lin, H. (2008). “Deposition and effective red emission of Eu3+-doped YxTixO0.5x crystal phosphor film,” Chinese J. Lumin. 29, 8993.Google Scholar
Nikl, M., Pejchal, J., Mihokova, E., Mares, J. A., Ogino, H., Yoshikawa, A., Fukuda, T., Vedda, A., and Ambrosio, C. D. (2006). “Antisite defect-free Lu3(GaxAl1−x)5O12:Pr scintillator,” Appl. Phys. Lett. 88, p141916(1–3).CrossRefGoogle Scholar
Pidol, L., Kahn-Harari, A., Viana, B., Ferrand, B., Dorenbos, P., De Hass, J. T. M., Van Eijk, C. W. E., and Virey, E. (2003). “Scintillation properties of Lu2Si2O7:Ce3+, a fast and efficient scintillator crystal,” J. Phys.: Condens. Matter 15, 20912094.Google Scholar
Wu, L., Chen, X. L., Li, H., He, M., Xu, Y. P., and Li, X. Z. (2005). “Structure determination and relative properties of novel cubic borates MM′4 (BO3)3 (M = Li, M′ = Sr; M = Na, M′ = Sr, Ba),” Inorg. Chem. 44, 64096414.CrossRefGoogle Scholar
Xie, N., Huang, Y., Qiao, X., Shi, L., and Seo, H. (2010). “A red-emitting phosphor of fully concentrated Eu3+-based molybdenum borate Eu2MoB2O9,” Mater. Lett. 64, 10001002.CrossRefGoogle Scholar