Hostname: page-component-586b7cd67f-r5fsc Total loading time: 0 Render date: 2024-11-28T07:06:30.233Z Has data issue: false hasContentIssue false

Kinetic analysis of the phase transformation from α- to β-copper phthalocyanine: A case study for sequential and parametric Rietveld refinements

Published online by Cambridge University Press:  29 February 2012

Melanie Müller
Affiliation:
Max-Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Robert E. Dinnebier*
Affiliation:
Max-Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Martin Jansen
Affiliation:
Max-Planck Institute for Solid State Research, Heisenbergstrasse 1, 70569 Stuttgart, Germany
Stefan Wiedemann
Affiliation:
Clariant Produkte (Deutschland) GmbH, Division PA, RPD, Industriepark Höchst, G 834, 65926 Frankfurt am Main, Germany
Carsten Plüg
Affiliation:
Clariant Produkte (Deutschland) GmbH, Division PA, RPD, Industriepark Höchst, G 834, 65926 Frankfurt am Main, Germany
*
a)Author to whom correspondence should be addressed. Electronic mail: [email protected]

Abstract

The solid-state phase transformation from α- to β-copper phthalocyanine, using isothermal data obtained at T=250 °C and nonisothermal data obtained in the temperature range of 30 °C≤T≤330 °C with a constant heating rate of 1.67 °/min, was investigated by sequential and parametric full quantitative Rietveld analyses. Results obtained in this study show that the parametric Rietveld refinement technique is most suitable and applicable for kinetic studies of isothermal powder diffraction data. On the other hand, the sequential Rietveld refinement technique can give reliable results for the kinetic analysis of nonisothermal data. The main advantages of the parametric Rietveld refinement over the sequential Rietveld refinement are increased robustness against outliers, low weight fractions, and noisy data and an increase in computational speed.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Avrami, M. (1939). “Kinetics off phase change: I—General theory,” J. Chem. Phys. JCPSA6 7, 11031112. 10.1063/1.1750380CrossRefGoogle Scholar
Avrami, M. (1941). “Granulation, phase change, and microstructure-kinetics of phase change III,” J. Chem. Phys. JCPSA6 9, 177184. 10.1063/1.1750872CrossRefGoogle Scholar
Christian, J. W. (1965). The Theory of Transformations in Metals and Alloys (Pergamon, Oxford).Google Scholar
Chupas, P. J., Circolo, M. F., Hanson, J. C., and Grey, C. P. (2001). “In situ X-ray diffraction and solid-state NMR study of the fluorination of γ -Al2O3 with HCF2Cl,” J. Am. Chem. Soc. JACSAT 123, 16941702. 10.1021/ja0032374CrossRefGoogle Scholar
Coelho, A. A. (2004). TOPAS, V3.0. Bruker AXS GmbH, Karlsruhe.Google Scholar
Czanderna, A. W., Ramchandra Rao, C. N., and Honig, J. M. (1958). “The anatase-rutile transition—Part 1: Kinetics of the transformation of pure anatase,” Trans. Faraday Soc. TFSOA4 54, 10691073. 10.1039/tf9585401069CrossRefGoogle Scholar
Doyle, C. D. (1961). “Kinetic analysis of thermogravimetric data,” J. Appl. Polym. Sci. JAPNAB 5, 285292. 10.1002/app.1961.070051506CrossRefGoogle Scholar
Engel, W., Eisenreich, N., Herrmann, M., and Kolarik, V. (1997). “Temperature resolved X-ray diffraction as a tool of thermal analysis,” J. Therm. Anal. JTHEA9 49, 10251037. 10.1007/BF01996790CrossRefGoogle Scholar
Erk, P. and Hengelsberg, H. (2003). Application of Phthalocyanines, The Porphyrin Handbook Vol. 19, edited by Kadish, K. M., Smith, K. M., and Guilard, R. (Elsevier Science, Boston), pp. 105149.Google Scholar
Farjas, J. and Roura, P. (2006). “Modification of the Kolmogorov-Johnson-Mehl-Avrami rate equation for nonisothermal experiments and its analytical solution,” Acta Mater. ACMAFD 54, 55735579. 10.1016/j.actamat.2006.07.037CrossRefGoogle Scholar
Hammersley, A. P. (1998). ESRF Internal Report, ESRF98HA01T, FIT2D V9.129 Reference Manual V3.1.Google Scholar
Hammersley, A. P., Svensson, S. O., Hanfland, M., Fitch, A. N., and Häusermann, D. (1996). “Two-dimensional detector software: From real detector to idealised image or two-theta scan,” High Press. Res. HPRSEL 14, 235248. 10.1080/08957959608201408CrossRefGoogle Scholar
Heinrich, J. (ed.) (2007). ANKA—Instrumentation Book (ANKA Angstroemquelle Karlsruhe/ISS Institute for Synchrotron Radiation, Karlsruhe).Google Scholar
Herbst, W. and Hunger, K. (1995). Industrielle Organische Pigmente (Verlag Chemie, Weinheim).CrossRefGoogle Scholar
Hinrichsen, B., Dinnebier, R. E., and Jansen, M. (2008). Powder Diffraction—Theory and Practice, edited by Dinnebier, R. E. and Billinge, S. L. J. (RSC, Cambridge), pp. 414438.CrossRefGoogle Scholar
Hinrichsen, B., Dinnebier, R. E., and Jansen, M. (2006). “Powder3D: An easy to use programme for data reduction and graphical presentation of large numbers of powder diffraction patterns,” Z. Kristallogr. ZEKRDZ 23, 231236.CrossRefGoogle Scholar
Iordanova, R., Lefterova, E., Uzunuv, I., Dimitriev, Y., and Klissurski, D. (2002). “Nonisothermal crystallisation kinetics of V2O5-MoO3-Bi2O3 glasses,” J. Therm. Anal. Calorim. 70, 393404. 10.1023/A:1021612204744 CrossRefGoogle Scholar
Johnson, W. A. and Mehl, R. F. (1939). “Reaction kinetics in processes of nucleation and growth,” Trans. Am. Inst. Min., Metall. Pet. Eng. TAIMAF 135, 416458.Google Scholar
Kolmogorov, A. N. (1937). “Statistical theory of crystallization of metals,” Izv. Akad. Nauk SSSR, Ser. Mat. ZZZZZZ 3, 355359.Google Scholar
Leach, A. (2001). Molecular Modeling, Principles and Applications (Pearson Education Limited, Harlow).Google Scholar
Lopes-da-Silva, J. A. and Coutinho, J. A. P. (2007). “Analysis of the isothermal structure development in waxy crude oils under quiescent conditions,” Energy Fuels ENFUEM 21, 36123617. 10.1021/ef700357vCrossRefGoogle Scholar
Madsen, I. C. and Scarlett, N. V. Y. (2008). Powder Diffraction—Theory and Practice, edited by Dinnebier, R. E. and Billinge, S. L. J. (RSC, Cambridge), pp. 298331.CrossRefGoogle Scholar
Málek, J., Šesták, J., Rouquerol, F., Criado, J. M., and Ortega, A. (1992). “Possibilities of two nonisothermal procedures (temperature- or rate-controlled) for kinetical studies,” J. Therm. Anal. JTHEA9 38, 7187. 10.1007/BF02109109CrossRefGoogle Scholar
Müller, M. (2009). “Kinetics of phase transformations of copper phthalocyanine pigments,” Diploma thesis, University of Tübingen.Google Scholar
Parise, J. B., Cahill, C. L., and Lee, Y. J. (2000). “Dynamic powder crystallography with synchrotron radiation X-ray sources,” Can. Mineral. CAMIA6 38, 777800. 10.2113/gscanmin.38.4.777CrossRefGoogle Scholar
Šatava, V. (1971). “Mechanism and kinetics from nonisothermal TG traces,” Thermochim. Acta THACAS 2, 423428. 10.1016/0040-6031(71)85018-9CrossRefGoogle Scholar
See EPAPS Document No. http://dx.doi.org/10.1154/1.3194111 E-PODIE2-24-012903 for supplemental data. Appendix A: Input file for parametric refinement of isothermal measurements; Appendix B: Input file for parametric refinement of nonisothermal measurements; Appendix C: Figure of capillary in brass pin, goniometer head, and measurement setup at ANKA. For more information on EPAPS, see http://www.aip.org/pubservs/epaps.html.Google Scholar
Stinton, G. W. and Evans, J. S. O. (2007). “Parametric Rietveld refinement,” J. Appl. Crystallogr. JACGAR 40, 8795. 10.1107/S0021889806043275CrossRefGoogle ScholarPubMed
Terry, A. E., Vaughan, G. B. M., Kvick, Å., Walton, R. I., Norquist, A. J., and O’Hare, D. (2002). “In situ time-resolved X-ray diffraction: The current state of the art,” Synchroton Radiat. News 15, 413. 10.1080/08940880208602958CrossRefGoogle Scholar
Supplementary material: File

Muller et al. supplementary material

Supplementary data and figure

Download Muller et al. supplementary material(File)
File 143.6 KB