Hostname: page-component-cd9895bd7-gxg78 Total loading time: 0 Render date: 2024-12-26T09:12:02.009Z Has data issue: false hasContentIssue false

Intrinsic strain effect on crystal and molecular structure of (dch32) cotton fiber

Published online by Cambridge University Press:  01 March 2012

O. M. Samir
Affiliation:
Department of Studies in Physics, University of Mysore, Manasagangothri, Mysore-570 006, India
R. Somashekar
Affiliation:
Department of Studies in Physics, University of Mysore, Manasagangothri, Mysore-570 006, India

Abstract

X-ray diffraction pattern from cotton fiber (dch32) grown in the Karnataka state of India has been recorded. Fiber was found to contain 17 Bragg reflections, of which 11 are broadened because of crystal size and intrinsic strain influences. Contributions to integrated intensities from intrinsic strain in the fiber have been estimated using line profile analysis. A molecular model was first constructed with standard bond lengths and angles using helical symmetry and layer-line spacings observed in the X-ray pattern. The model was then refined against observed X-ray data using the linked atom least squares (LALS) method. The refinement has been done with and without the intrinsic strain correction to find the extent of structural changes. These changes have been quantified in terms of bond angles, bond lengths, and torsion angles. Young’s modulus has been estimated for these fibers using the results of line profile analysis, and a broad agreement with the reported physical measurements has been obtained.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Allen, F. H., Bellard, S., Brice, M. D., Cartwright, B. A., Doubleday, A., Higgs, H., Hummelink, A. T., Hummelink-Peters, B. G., Kennard, O., Motherwell, W. D. S., Rodgers, J. R., and Watson, D. G. (1979). “The Cambridge Crystallographic Data Centre: computer-based search, retrieval, analysis and display of information,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem.ACBCAR10.1107/S0567740879009249 35, 23312339.CrossRefGoogle Scholar
Balzar, D. (2004). “Size-strain line-broadening analysis of the ceria round-robin samples,” J. Appl. Crystallogr.JACGAR10.1107/S0021889804022551 37, 911924.CrossRefGoogle Scholar
Chen, R., Jakes, K. A., and Foreman, D. W. (2004). “Peak-fitting analysis of cotton fiber powder X-ray diffraction spectra,” J. Appl. Polym. Sci.JAPNAB10.1002/app.20666 93, 20192024.CrossRefGoogle Scholar
Cullity, B. D. (1956). Elements of X-ray Diffraction (Addison-Wesley, Reading, MA).Google Scholar
Eichhorn, S., Baillie, C., Zafeiropoulos, N., Mwaikambo, Y., Ansell, P., Dufresne, A., Entwistle, M., Herrera-Franco, J., Escamilla, G., Groom, L., Hughes, M., Hill, C., Rials, T., and Wild, M. (2001). “Review: Current international research into cellulosic fibres and composites,” J. Mater. Sci.JMTSAS 36, 21072131.Google Scholar
Ellis, K. C. and Warwicker, J. O. (1962). “A study of the crystal structure of cellulose I,” J. Polym. Sci.JPSCAU 56, 339357.Google Scholar
Ford, Z. M., Stevens, E. D., Johnson, G. P., and French, A. D. (2005). “Determining the crystal structure of cellulose IIII by modeling,” Carbohydr. Res.CRBRAT 340, 827833.Google Scholar
Gardener, K. H. and Blackwell, J. (1974). “The structure of native cellulose,” BiopolymersBIPMAA 13, 19752001.Google Scholar
Hall, I. H. and Somashekar, R. (1991). “The determination of crystal size and disorder from the X-ray diffraction photography of polymer fibres. 2. Modeling intensity profiles,” J. Appl. Crystallogr.JACGAR 24, 10511059.CrossRefGoogle Scholar
Hermans, P. H. (1949). Physics and Chemistry of Cellulose Fibers (Elsevier, New York).Google Scholar
Hosemann, R. (1982). “Abhängigkeit der freien Enthalpie-Änderung von der Netzebenenzahl bei ßildung von Mikroparakristallen,” Colloid Polym. Sci.CPMSB6 260, 864870.CrossRefGoogle Scholar
Hunter, R. E. and Dweltz, N. E. (1979). “Structure of cellulose II,” J. Appl. Polym. Sci.JAPNAB 23, 249259.Google Scholar
Kulshreshtha, A. K. and Dweltz, N. E. (1973). “Paracrystalline lattice disorder in cellulose I. Reappraisal of the application of the two-phase hypothesis to the analysis of polymer X-ray diffractograms of native and hydrolyzed cellulosic materials,” J. Polym. Sci., Polym. Phys. Ed.JPLPAY 11, 487497.CrossRefGoogle Scholar
Langan, P., Nishiyama, Y., and Chanzy, H. (1999). “The crystal structure and hydrogen bonding system in cellulose from neutron fibre diffraction data,” Fibre Diffr. Rev. 8, 4247.Google Scholar
Martis, K. W. and Wilke, W. (1977). “Orientierungsabhängige Änderungen der Kristallit großöe beim Verstrecken von Polyäthylen,” Prog. Colloid Polym. Sci.PCPSD7 62, 44.CrossRefGoogle Scholar
Okuyama, K., Noguchi, K., Miyazawa, T., Yui, T., and Ogawa, K. (1997). “Molecular and crystal structure of hydrated chitosan,” MacromoleculesMAMOBX 30, 58495855.CrossRefGoogle Scholar
Okuyama, K., Somashekar, R., Noguchi, K., and Ichimura, S. (2001). “Refined molecular and crystal structure of silk I based on Ala-Gly and (Ala-Gly)2-Ser-Gly peptide sequence,” BiopolymersBIPMAA 59, 310319.Google Scholar
Parrinello, M. and Rahman, A. (1982). “Strain fluctuations and elastic constants,” J. Chem. Phys.JCPSA610.1063/1.443248 76, 26622666.Google Scholar
Perelomova, N. V. and Tagieva, M. M. (1983). Problems in Crystal Physics with Solutions, edited by Shaskol’skaya, M. P. (Mir, Moscow).Google Scholar
Popa, N. C. and Balzar, D. (2002). “An analytical approximation for a size-broadened profile given by the lognormal and gamma distributions,” J. Appl. Crystallogr.JACGAR10.1107/S0021889802004156 35, 338346.CrossRefGoogle Scholar
Press, W., Flannery, B. P., Teukolsky, S., and Vetterling, W. T. (Eds). (1986). Numerical Recipes(Cambridge University Press, Cambridge).Google Scholar
Sangappa, , Okuyama, K., and Somashekar, R. (2004). “Strain-tensor components, crystallite shape, and their effects on crystalline structure in silk I,” J. Appl. Polym. Sci.JAPNAB10.1002/app.13521 91, 30453053.Google Scholar
Shaw, C. and Eckersley, F. (1967). Cotton (Sir Isaac Pitman and Sons, London).Google Scholar
Smith, P. J. C. and Arnott, S. (1978). “LALS: a linked-atom least-squares reciprocal-space refinement system incorporating stereochemical restraints to supplement sparse diffraction data,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr.ACACBN10.1107/S0567739478000029 34, 311.Google Scholar
Spek, A. L. (2003). “Single-crystal structure validation with the program PLATON,” J. Appl. Crystallogr.JACGAR10.1107/S0021889802022112 36, 713.Google Scholar
Viswanathan, A. and Shenouda, S. G. (1971). “The helical structure of cellulose I,” J. Appl. Polym. Sci.JAPNAB 15, 519535.CrossRefGoogle Scholar
Warren, B. E. (1955). “A generalized treatment of cold work in powder patterns,” Acta Crystallogr.ACCRA910.1107/S0365110X55001503 8, 483486.CrossRefGoogle Scholar
Warren, B. E. and Averbach, B. L. (1952). “The separation of cold-work distortion and particle size broadening in X-ray patterns,” J. Appl. Phys.JAPIAU 23, 497.CrossRefGoogle Scholar
Wilke, W. and Martis, K. W. (1974). “Kristallitgröße und Gitterstörungen in verstrecktem Polyäthylen,” Colloid Polym. Sci.CPMSB6 252, 718733.Google Scholar