Hostname: page-component-cd9895bd7-jn8rn Total loading time: 0 Render date: 2025-01-06T03:27:21.596Z Has data issue: false hasContentIssue false

Influence of planar defects on powder diffractograms of fcc metals

Published online by Cambridge University Press:  06 March 2012

A. I. Ustinov
Affiliation:
Institute for Metal Physics, Kyiv 03680, Ukraine
N. M. Budarina
Affiliation:
Institute for Metal Physics, Kyiv 03680, Ukraine

Abstract

X-ray powder diffractograms from fcc crystals containing high concentration (more than 1%) of planar defects [deformation stacking faults (SF), double deformation SF, twin boundaries (TB)] have been simulated by Monte Carlo method in kinematic approach. It was shown that the characteristics of powder diffraction peak profiles (except peaks with indexes H00) dependent nonmonotonically on PD concentration, during which peak maximums stay in Bragg positions. An addition point to emphasize is that an appearance of TB only in the crystal not affects on position of all peaks. Several types of PD to be occurred simultaneously in the crystal influence on powder diffractograms additively. Peculiarities of the powder diffraction pattern inherent in different types of PD have been revealed to permit predominant PD type to be found with a high degree of accuracy based on experimental data.

Type
Technical Articles
Copyright
Copyright © Cambridge University Press 2002

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Barret, G. (1950). “Fault in the Structure of Coppler–Silicon Alloys,” Trans. Metall. Soc. AIME TMSAAB 188, 123125. tms, TMSAAB Google Scholar
Belov, N. V. (1947). Structure of Ionic Crystals and Metallic Phases (Publishing House of the Academy of Sciences of USSR, Moscow, 1947), 287 pp.Google Scholar
Bergeon, N. et al. , (1997). “Study of the Fault Stacking in the γ (f.c.c.)↔ε (h.c.p.) Martensitic Transformation,” J. Phys. IV JPICEI 7, C5-125C5-130. jpv, JPICEI Google Scholar
Berliner, R.and Werner, S. A. (1986). “Effect of Stacking Faults on Diffraction: The Structure of Lithium Metal,” Phys. Rev. B PRBMDO 34, 35863603. prb, PRBMDO Google Scholar
Bridley, G. W.and Mering, J. (1951). “Diffractions des Rayons X par les Structures en Couches Desordonees,” Acta Crystallogr. ACCRA9 4, 441447. acc, ACCRA9 Google Scholar
Cochran, W.and Howells, E. R. (1954). “X-Ray Diffraction by a Layer Structure Containing Random Displacements,” Acta Crystallogr. ACCRA9 7, 412451. acc, ACCRA9 Google Scholar
Gauzzi, F.and Montanari, R. (1999). “Martensite Reversion in an Fe-21%Mn-0.1%C Alloy,” Mater. Sci. Eng., A MSAPE3 273–275, 524527. msa, MSAPE3 Google Scholar
Gevers, R. (1952). “Desordre Unidimensionnel dans SiC et son Influence sur les Intensites Diffractees des Rayous X,” Acta Crystallogr. ACCRA9 5, 518524. acc, ACCRA9 Google Scholar
Hirth, J. P. and Lothe, J. (1972). Theory of Dislocation (Atomizdat, Moscow), 213 pp.Google Scholar
Jagodzinski, H. (1949). “Eindimensionalle Fehlordnung in Kristallen und ihr Einflus auf die Rontgeninterferenzen. I. Berechnung des Fehlordnungsgrades aus den Rontgeninter,” Acta Crystallogr. ACCRA9 2, 201207. acc, ACCRA9 Google Scholar
Jagodzinski, H. (1949). “Eindimensionalle Fehlordnung in Kristallen und ihr Einflus auf die Rontgeninterferenzen. II. Berechnung der Fehlordnetes dichtestes Kugelpackungen der Reichweite 3,” Acta Crystallogr. ACCRA9 2, 208214. acc, ACCRA9 CrossRefGoogle Scholar
Jagodzinski, H. (1954). “Der Symmetryinfluss auf den Allgenunen Losungsanm Eindimensionaler Fehlordnum y Sprobleme,” Acta Crystallogr. ACCRA9 7, 1725. acc, ACCRA9 CrossRefGoogle Scholar
Jonson, Ch. A. (1963). “Diffraction by Face-Centered Cubic Crystals Containing Extrinsic Stacking Faults,” Acta Crystallogr. ACCRA9 16, 490497. acc, ACCRA9 Google Scholar
Kajiwara, S.and Fujita, H. (1966). “Shifts of Electron Diffraction Spots of Cu-Al Martensite Transformed in Thin Foils,” J. Phys. Soc. Jpn. JUPSAU 21, 400400. jup, JUPSAU Google Scholar
Kajiwara, S. (1967). “Stacking Fault Probabilities in Copper-Aluminium Martensite Transformed in Thing Foils,” J. Phys. Soc. Jpn. JUPSAU 22, 795803. jup, JUPSAU Google Scholar
Kakinoki, J. (1967). “Diffraction by a One-Dimensionally Disordered Crystal. II. Close-Packed Structures,” Acta Crystallogr. ACCRA9 23, 875885. acc, ACCRA9 Google Scholar
Landau, L. (1937). “The Scattering of X-Ray by Crystals with Variable Lamella Structure,” Sov. J. Appl. Phys. SJAPE6 12, 579585. sap, SJAPE6 Google Scholar
Lysak, L. I.and Ustinov, A. I. (1977). “Mechanism of Martensitic Structure Formation in Copper-Silicon Alloy,” Phys. Met. Metallogr. PHMMA6 44, 10501059. pmm, PHMMA6 Google Scholar
Mering, J. (1949). “L’interferance des Rayons X dans les Systemes a Stratification Desordonee,” Acta Crystallogr. ACCRA9 2, 371377. acc, ACCRA9 Google Scholar
Mirzaev, D. A.and Ruschic, S. V. (1974). “Diffraction Effects caused of γ→ε and γ→ε Transformations,” Phys. Met. Metallogr. PHMMA6 37, 912920. pmm, PHMMA6 Google Scholar
Mirzaev, D. A.and Ruschic, S. V. (1976). “X-Ray Diffraction by Crystals with Stacking Faults,” Acta Crystallogr., Sect. A: Cryst. Phys., Diffr., Theor. Gen. Crystallogr. ACACBN 21, 670677. aca, ACACBN Google Scholar
Nishiyama, Z. et al. (1965). “Stacking Faults in Martensite of Cu-Al,” J. Phys. Soc. Jpn. JUPSAU 20, 11921211. jup, JUPSAU Google Scholar
Paterson, M. S. (1952). “X-Ray Diffraction by Face-Centered Cubic Crystals with Deformation Faults,” J. Appl. Phys. JAPIAU 23, 805811. jap, JAPIAU CrossRefGoogle Scholar
Pushin, V. G. et al. (1993). “Investigation of the Cobalt-Nickel Alloys Microstructure relative to FCC-HCP Transformation,” Phys. Met. Metallogr. PHMMA6 75, 96110. pmm, PHMMA6 Google Scholar
Tholen, A. R. (1986). “Martensitic Transformation in Small Cobalt Particles,” Philos. Mag. A PMAADG 53, 259276. pma, PMAADG CrossRefGoogle Scholar
Ustinov, A. I. (1999). Effect of Planar Defects in Crystals on Diffraction Lines/Defect and Microstructure Analysis by Diffraction (University Press, Oxford), 264 pp.Google Scholar
Ustinov, A. I. et al. (2000). “Peculiarities of X-ray powder diffractograms of f.c.c. crystals with high density of deformation stacking faults,” Metallofiz. Noveishie Tekhnol. MNTEEU 22, 2835. 8oc, MNTEEU Google Scholar
Wagner, C. N. J. et al. (1965). “X-Ray Diffraction Study of Plastically Deformed Copper,” Trans. Metall. Soc. AIME TMSAAB 233, 12801286. tms, TMSAAB Google Scholar
Warren, B. E. (1969). X-Ray Diffraction//Progress in Metal Physics (Metallurgizdat, Moscow), Vol. 5, p. 372.Google Scholar
Warren, B. E.and Averbach, B. L. (1950). “The Effect of Cold-Work Distortion on X-Ray Patterns,” J. Appl. Phys. JAPIAU 21, 595599. jap, JAPIAU Google Scholar
Wilson, A. J. C. (1942). “Imperfection in the Structures of Cobalt. Mathematical Treatment of Proposed Structure,” Proc. R. Soc. London, Ser. A PRLAAZ 180, 277285. prz, PRLAAZ Google Scholar