Hostname: page-component-78c5997874-v9fdk Total loading time: 0 Render date: 2024-11-10T02:41:02.341Z Has data issue: false hasContentIssue false

Improvement of X-ray powder diffraction patterns of the spin transition polymer [Fe(Htrz)3](ClO4)2⋅1.85H2O

Published online by Cambridge University Press:  05 March 2012

E. Smit
Affiliation:
Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa
B. Manoun
Affiliation:
Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa
S. M. C. Verryn
Affiliation:
Department of Earth Sciences (XRD and XRF Laboratory), University of Pretoria, Pretoria 0002, South Africa
D. de Waal*
Affiliation:
Department of Chemistry, University of Pretoria, Pretoria 0002, South Africa
*
a)Author to whom correspondence should be addressed.

Abstract

The effects of proper drying and grinding of [Fe(Htrz)3](ClO4)2⋅1.85H2O specimens on the quality of X-ray powder patterns are illustrated (Htrz=1H-1,2,4-Triazole). A procedure is suggested to achieve high-quality, reproducible X-ray powder patterns of the compound. The observed powder diffraction data of the compound are reported together with preliminary indices calculated for a monoclinic system with cell parameters a=15.8160 Å, b=20.6134 Å, c=13.0321 Å, β=103.83° and Volume=4125.633 Å3, with reliability factors: M15=10.4, F15=22.0 (0.0100; 68) and space group P21/m. This compound is very similar to the compound [Cu(Hyetrz)3](ClO4)2⋅3H2O and a comparison is made between the cell parameters of the two compounds

Type
New Diffraction Data
Copyright
Copyright © Cambridge University Press 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Boultif, A., and Loue¨r, D. (1991). “Indexing of powder diffraction patterns for low symmetry lattices by the successive dichotomy method,” J. Appl. Crystallogr. JACGAR 24, 987993. acr, JACGAR CrossRefGoogle Scholar
Garcia, Y., Van Koningsbruggen, P. J., Bravic, G., Guionneau, P., Chasseau, D., Cascarano, G. L., Moscovici, J., Lambert, K., Michalowicz, A., and Kahn, O. (1997). “Synthesis, crystal structure, EXAFS, and magnetic properties of catena-Poly[μ-tris(4-(2-hydroxyethyl)-1,2,4-triazole-N1,N2)copper(II) diperchlorate trihidrate: Relevance with the structure of the iron(II) 1,2,4-triazole spin transition molecular materials,” Inorg. Chem. INOCAJ 36, 63576365. ino, INOCAJ CrossRefGoogle Scholar
Garcia, Y., Van Koningsbruggen, P. J., Lapouyade, R., Fourne`s, L., Rabardel, L., Kahn, O., Ksenofontov, V., Levchenko, G., and Gu¨tlich, P. (1998). “Influences of temperature, pressure, and lattice solvents on the spin transition regime of the polymeric compound [Fe(hyetrz)3A2⋅3H2O (hyetrz=4-(2-hydroxyethyl)-1,2,4-triazole and A=3-nitrophenylsulphonate),” Chem. Mater. CMATEX 10, 24262433. cma, CMATEXCrossRefGoogle Scholar
Haasnoot, J., G. (1996). “1,2,4-TRIAZOLES AS LIGANDS FOR IRON(II) HIGH SPIN↔LOW SPIN CROSSOVERS,” in Magnetism: A Supramolecular Function, edited by O. Kahn (Kluwer Academic, Netherlands), pp. 299–321.Google Scholar
Haasnoot, J. G., Vos, G., and Groeneveld, W. L. (1977). “1,2,4-Triazole complexes, III. Complexes of transition metal(II) nitrates and fluoroborates,” Z. Naturforsch. B ZNBAD2 32, 14211430. znb, ZNBAD2CrossRefGoogle Scholar
Kahn, O., Kro¨ber, J., and Jay, C. (1992). “Spin transition molecular materials for displays and data recording,” Adv. Mater. ADVMEW 4, 718728. amt, ADVMEW CrossRefGoogle Scholar
Kro¨ber, J., Audie`re, J., Claude, R., Codjovi, E., Kahn, O., Haasnoot, J. G., Grolie`re, F., Jay, C., Bousseksou, A., Linare`s, J., Varret, F., and Gonthier-Vassal, A. (1994). “Spin transitions and thermal hystereses in the molecular-based materials [Fe(Htrz)2(trz)](BF4) and [Fe(Htrz)3](BF4)2⋅H2O (Htrz=1,2,4-4H-Triazole; trz=1,2,4-Triazolato),” Chem. Mater. CMATEX 6, 14041412. cma, CMATEXCrossRefGoogle Scholar
Kro¨ber, J., Codjovi, E., Kahn, O., Grolie`re, F., and Jay, C. (1993). “A spin transition system with a thermal hysteresis at room temperature,” J. Am. Chem. Soc. JACSAT 115, 98109811. acs, JACSAT CrossRefGoogle Scholar
Michalowicz, A., Moscovici, J., Ducourant, B., Cracco, D., and Kahn, O. (1995). “EXAFS and X-ray powder diffraction studies of the spin transition molecular materials [Fe(Htrz)2(trz)](BF4) and [Fe(Htrz)3](BF4)2⋅H2O (Htrz=1,2,4-4H-Triazole; trz=1,2,4-Triazolato),”Chem. Mater. CMATEX 7, 18331842. cma, CMATEXCrossRefGoogle Scholar
Palmer, D. (1996). Crystal Maker (Cambridge University Technical Services Ltd., Cambridge, U.K.).Google Scholar
Smit, E., Manoun, B., and De Waal, D. “Low-frequency Raman spectra of the spin transition complexes [Fe(Hrtz)3](ClO4)2 and [Fe(NH2trz)3](ClO4)2,” accepted in Journal of Raman Spectroscopy.Google Scholar
Smit, E., De Waal, D., and Heyns, A. M. (2000). “The spin transition complexes [Fe(Hrtz)3](CIO4)2 and [Fe(NH2trz)3](CIO4)2: I. FT-IR spectra of a low pressure and low temperature phase transition,” Mater. Res. Bull. MRBUAC 35, 1016971707. mrb, MRBUAC CrossRefGoogle Scholar
Zarembowitch, J., and Kahn, O. (1991). “Spin-transition molecular systems: Toward information storage and signal processing,” New J. Chem. NJCHE5 15, 181190. njc, NJCHE5 Google Scholar