Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-12-01T06:23:09.825Z Has data issue: false hasContentIssue false

High-temperature X-ray powder diffractometry of the decomposition of zirconium hydroxide nitrates

Published online by Cambridge University Press:  10 January 2013

Patricia Bénard
Affiliation:
Laboratoire de Cristallochimie, (U.R.A. C.N.R.S. 1495), Université de Rennes I, avenue du Général Leclerc, 35042 Rennes Cédex, France
Jean Paul Auffrédic
Affiliation:
Laboratoire de Cristallochimie, (U.R.A. C.N.R.S. 1495), Université de Rennes I, avenue du Général Leclerc, 35042 Rennes Cédex, France
Daniel Louër
Affiliation:
Laboratoire de Cristallochimie, (U.R.A. C.N.R.S. 1495), Université de Rennes I, avenue du Général Leclerc, 35042 Rennes Cédex, France

Abstract

The decomposition reactions of two zirconium hydroxide nitrates Zr(OH)2(NO3)2·(4+x)H2O and α-Zr(OH)2 (NO3)2·(1+x)H2O (0≤x≤1) have been studied by thermogravimetric analysis and high-temperature X-ray powder diffractometry (HTXRD), in nitrogen gas environment. The decomposition reaction sequences were clearly displayed by the HTXRD technique. They are different for the two precursors, except the formation of amorphous zirconia at low temperature (200 °C) and crystalline zirconia at about 390 °C. Three modifications of Zr(OH)2(NO3)2·H2O (α,β,γ) were identified. Their X-ray powder diffraction patterns were indexed by the successive dichotomy method. The unit cells are triclinic and present some parametric and volumetric similarities from each other and also with that of their precursor. Moreover, the thermal decomposition sequences of Zr(OH)2(NO3)2·(4+x)H2O and α-Zr(OH)2(NO3)2·(1+x)H2O include the formation of anhydrous oxide nitrate ZrO(NO3)2 and anhydrous hydroxide nitrate Zr(OH)2(NO3)2, respectively.

Type
Research Article
Copyright
Copyright © Cambridge University Press 1993

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Auffrédic, J. P., and Louër, D. (1983). J. Solid State Chem. 46, 245252.CrossRefGoogle Scholar
Auffrédic, J. P., Plévert, J., and Louër, D. (1990). J. Solid State Chem. 84, 5870.CrossRefGoogle Scholar
Bear, I. J., and Mumme, W. G. (1969). Acta Cryst. B25, 15581566; B25, 1566–1572; B25, 1572–1581.CrossRefGoogle Scholar
Bénard, P., Louër, M., Auffrédic, J. P., and Louër, D. (1991). J. Solid State Chem. 91, 296305.CrossRefGoogle Scholar
Bénard, P., Louër, M., and Louër, D. (1991). J. Solid State Chem. 94, 2734.CrossRefGoogle Scholar
Boultif, A., and Louër, D. (1991). J. Appl. Cryst. 24, 987993.CrossRefGoogle Scholar
Chayka, P. V. and Gobel, H. E. (1983). Adv. X-ray Anal. 27, 157165.Google Scholar
Clearfield, A. (1964). Rev. Pure Appl. Chem. 14, 91108.Google Scholar
Gimblett, F. G. R., Hussain, A., and Sing, K. S. W. (1988). J. Therm. Anal. 34, 10011013.CrossRefGoogle Scholar
Govorukhina, O. A., Rusentsova, V. N., Vasil'eva, T. N., Mikhailova, N. L., Nikitina, S. D., Schegoleva, R. I., and Musloboev, V. A. (1989). Zh. Neorg. Khim. 34, 31593163.Google Scholar
Livage, J., Henry, M., and Sanchez, C. (1988). Prog. Solid State Chem. 18, 259341.CrossRefGoogle Scholar
Louër, D. (1991). Mater. Sci. For. 79–82, 1726.Google Scholar
Louër, D., and Langford, J. I. (1988). J. Appl. Cryst. 21, 430437.CrossRefGoogle Scholar
Louër, D., and Louër, M. (1972). J. Appl. Cryst. 5, 272275.Google Scholar
Mamott, G. T., Barnes, P., Tarling, S. E., Janes, S. L., and Norman, C. J. (1988). Powder Diffr. 3, 234239.CrossRefGoogle Scholar
McWhan, D. B., and Lundgren, G. (1963). Acta Cryst. 16, A36.Google Scholar
Me Whan, D. B., and Lundgren, G. (1966). Inorg. Chem. 5, 284289.Google Scholar
Mighell, A. D., Hubbard, C. R., and Stalik, J. K. J (1981). NBS*AIDS80: A FORTRAN Program for Crystallographic Data Evaluation. Nat. Bur. Stand. (U.S.A.) Tech. Note 1141. (NBS*AIDS83 is an expanded version of NBS*AIDS80).CrossRefGoogle Scholar
Rodriguez-Carvajal, J. (1990). In collected Abstracts of Powder Diffraction Meeting, Toulouse (France), p. 127.Google Scholar
Smith, G. S., and Snyder, R. L. (1979). J. Appl. Cryst. 12, 6065.CrossRefGoogle Scholar
Srinivasan, R., Davis, B. H., Cavin, O. B., and Hubbard, C. R. (1992). J. Am. Ceram. Soc. 75, 12171222.CrossRefGoogle Scholar
Subbarao, E. C. (1981). Adv. Ceram. 3 (Sci. Technol. Zirconia), 124.Google Scholar
Wiles, D. B., Sakthivel, A., and Young, R. A. (1987). Program DBW3.2S.Google Scholar
Wolff, P. M. de (1986). J. Appl. Cryst. 1, 108113CrossRefGoogle Scholar