Hostname: page-component-cd9895bd7-8ctnn Total loading time: 0 Render date: 2025-01-01T18:15:45.023Z Has data issue: false hasContentIssue false

Full powder pattern decomposition and direct phasing in EXPO2004: A statistical study

Published online by Cambridge University Press:  01 March 2012

Angela Altomare
Affiliation:
IC, Sede di Bari, via Amendola 122∕o, 70126 Bari, Italy
Corrado Cuocci
Affiliation:
Dipartimento Geomineralogico, Università di Bari,Campus Universitario, Via Orabona 4, 70125 Bari, Italy
Iván da Silva
Affiliation:
Dpto. Física Fundamentall II, Universidad de La Laguna, Avda. Astrofisico Fco. Sánchez s∕n, E-38204, La Laguna, Tenerife, Spain
Carmelo Giacovazzo*
Affiliation:
IC, Sede di Bari, via Amendola 122∕o, 70126 Bari, Italy and Dipartimento Geomineralogico, Università di Bari, Campus Universitario, Via Orabona 4, 70125 Bari, Italy
Anna Grazia Giuseppina Moliterni
Affiliation:
IC, Sede di Bari, via Amendola 122∕o, 70126 Bari, Italy
Rosanna Rizzi
Affiliation:
IC, Sede di Bari, via Amendola 122∕o, 70126 Bari, Italy
*
a)Electronic mail: [email protected]

Abstract

Ab initio crystal structure solution by powder diffraction data is based on the experimental full pattern decomposition process: the resulting structure factor moduli are used for direct phasing. The extracted intensity estimates are scarcely accurate (overlapping, background, and preferred orientation are the main causes of the lack of accuracy), no matter if Le Bail or Pawley method is adopted: consequently the structure solution process is not straightforward. We have focused our attention on the relation between the efficiency of the EXPO2004 phasing process and the various parameters which are normally used in the full pattern decomposition process, e.g., the peak shape function, the number of refinement cycles, the degree of overlapping. Different steps of the phasing process are considered: the definition of the unit cell, the determination of the space group, and the application of direct methods.

Type
Invited Articles
Copyright
Copyright © Cambridge University Press 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

A., Altomare, Caliandro, R., Camalli, M., Cuocci, C., da Silva, I., Giacovazzo, C., Moliterni, A. G. G., and Spagna, R. (2004b). “Space-group determination from powder diffraction data: A probabilistic approach,” J. Appl. Crystallogr.JACGAR 37, 957966.Google Scholar
Altomare, A., Caliandro, R., Camalli, M., Cuocci, C., Giacovazzo, C., Moliterni, A. G. G., and Rizzi, R. (2004c). “Automatic structure determination from powder data with EXPO2004,” J. Appl. Crystallogr.JACGAR 37, 10251028.CrossRefGoogle Scholar
Altomare, A., Caliandro, R., Cuocci, C., da Silva, I., Giacovazzo, C., Moliterni, A. G. G., and Rizzi, R. (2004a). “The use of error-correcting codes for the decomposition of a powder diffraction pattern,” J. Appl. Crystallogr.JACGAR 37, 204209.CrossRefGoogle Scholar
Altomare, A., Caliandro, R., Cuocci, C., Giacovazzo, C., Moliterni, A. G. G., and Rizzi, R. (2003). “A systematic procedure for the decomposition of a powder diffraction pattern,” J. Appl. Crystallogr.JACGAR 36, 906913.CrossRefGoogle Scholar
Altomare, A., Cascarano, G., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Burla, M. C., and Polidori, G. (1995). “On the number of statistically independent observations in a powder diffraction pattern,” J. Appl. Crystallogr.JACGAR10.1107/S0021889895009757 28, 738744.CrossRefGoogle Scholar
Altomare, A., Giacovazzo, C., Guagliardi, A., Moliterni, A. G. G., Rizzi, R., and Werner, P.-E. (2000). “New techniques for indexing: N-TREOR in EXPO,” J. Appl. Crystallogr.JACGAR 33, 11801186.CrossRefGoogle Scholar
Altomare, A., Giacovazzo, C., Moliterni, A. G. G., and Rizzi, R. (2001). “A random procedure for the decomposition of a powder pattern in EXPO,” J. Appl. Crystallogr.JACGAR 34, 704709.CrossRefGoogle Scholar
Andreev, Y. G. and Bruce, P. G. (1998). “Solving crystal structures of molecular solids without single crystals: A simulated annealing approach,” J. Chem. Soc. Dalton Trans.JCDTBI 1998, 40714080.CrossRefGoogle Scholar
Andreev, Y. G., MacGlashan, G. S., and Bruce, P. G. (1997). “Ab initio solution of a complex crystal structure from powder-diffraction data using simulated-annealing method and a high degree of molecular flexibility,” Phys. Rev. BPRBMDO10.1103/PhysRevB.55.12011 55, 1201112017.CrossRefGoogle Scholar
Baerlocher, C., McCusker, L. B., and Chiappetta, R. (1994). “Location of the 18-crown-6 template in EMC-2 (EMT) Rietveld refinement of the calcined and as-synthesized forms,” Microporous Mater.MCMTEV 2, 269280.CrossRefGoogle Scholar
Banerjee, S., Mukherjee, A. K., Neumann, M. A., and Louër, D. (2002). “Ab initio structure determination of a Cu(II)-schiff base complex from X-ray powder diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ 58, C264.CrossRefGoogle Scholar
Brown, A. and Edmonds, J. W. (1980). “The fitting of powder diffraction profiles to an analytical expression and the influence of line broadening factors,” Adv. X-Ray Anal.AXRAAA 23, 361374.Google Scholar
Burla, M. C., Camalli, M., Carrozzini, B., Cascarano, G. L., Giacovazzo, C., Polidori, G., and Spagna, R. (1999). “SIR99, a program for the automatic solution of small and large crystal structures,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ 55, 991999.CrossRefGoogle ScholarPubMed
Camblor, M. A., Corma, A., Díaz-Cabañas, M.-J., and Baerlocher, C. (1998). “Synthesis and structural characterization of MWW type zeolite ITQ-1, the pure silica analog of MCM-22 and SSZ-25,” J. Phys. Chem. BJPCBFK 102, 4451.CrossRefGoogle Scholar
Cernik, R. J., Cheetham, A. K., Prout, C. K., Watkin, D. J., Wilkinson, A. P., and Willis, B. T. M. (1991). “The structure of Cimetidine (C10H16N6S) solved from synchrotron-radiation X-ray powder diffraction data,” J. Appl. Crystallogr.JACGAR10.1107/S0021889890013486 24, 222226.CrossRefGoogle Scholar
Chernyshev, V. V., Fitch, A. N., Sonneveld, E. J., Kurbakov, A. I., Makarov, V. A., and Tafenko, V. A. (1999). “Crystal and molecular structures of 2-[1-( 2-aminoethyl)-2-imidazolidinylidene]-2-nitroacetonitrile (C7H11N5O2) and 2,6-diamino-5-hydroxy-3-nitro-4H-pyrazolo[1,5-a]pyrimidin-7-one monohydrate (C6H6N6O4∙H2O) from X-ray, synchrotron and neutron powder diffraction data,” Acta Crystallogr., Sect. B: Struct. Sci.ASBSDK 55, 554562.CrossRefGoogle Scholar
Christensen, A. N. (1992). “Hydrogen bonds in BaC2O4D2O,” Acta Chem. Scand.ACHSE7 46, 240243.CrossRefGoogle Scholar
Christensen, A. N. (1994). “Investigation by the use of profile refinement of neutron powder diffraction data of the geometry of the [Si2O7]6− ions in the high temperature phases of rare earth disilicates prepared from the melt in crucible-free synthesis,” Z. Kristallogr.ZEKRDZ 209, 713.CrossRefGoogle Scholar
Christensen, A. N., Nielsen, M., O’Reilly, K. P. J., and Wroblewski, T. (1992). “Structure of Y4O(OH)9NO3,” Acta Chem. Scand.ACHSE7 46, 224230.CrossRefGoogle Scholar
Cochran, W. (1955). “Relations between the phases of structure factors,” Acta Crystallogr.ACCRA9 8, 473478.CrossRefGoogle Scholar
Cockcroft, J. K. and Fitch, A. N. (1990). “The solid phases of deuterium sulphide by powder neutron diffraction,” Z. Kristallogr.ZEKRDZ 193, 119.CrossRefGoogle Scholar
Dadachov, M. S. and Le Bail, A. (1997). “Structure of zeolitic K2TiSi3O9∙H2O determined ab initio from powder diffraction data,” Eur. J. Solid State Inorg. Chem.EJSCE5 34, 381390.Google Scholar
David, W. I. F. (1999). “On the number of independent reflections in a powder diffraction pattern,” J. Appl. Crystallogr.JACGAR 32, 654663.CrossRefGoogle Scholar
David, W. I. F.Shankland, K. and Shankland, N. (1998). “Routine determination of molecular crystal structures from powder diffraction data,” Chem. Commun. (Cambridge)CHCOFS 1998, 931932.CrossRefGoogle Scholar
David, W. I. F., and Sivia, D. S., (2002). Structure Determination from Powder Diffraction Data, edited by David, W. I. F., Shankland, K., McCusker, L. B., and Baerlocher, Ch. (Oxford University Press, New York), pp. 136161.Google Scholar
de Wolff, P. M. (1968). “A simplified criterion for the reliability of a powder pattern indexing,” J. Appl. Crystallogr.JACGAR10.1107/S002188986800508X 1, 108113.CrossRefGoogle Scholar
Estermann, M. A., McCusker, L. B., and Baerlocher, C. (1992). “Ab initio structure determination from severely overlapping powder diffraction data,” J. Appl. Crystallogr.JACGAR10.1107/S0021889892004862 25, 539543.CrossRefGoogle Scholar
Hammond, R. B., Roberts, K. J., Docherty, R., and Edmondson, M. (1997). “Computationally assisted structure determination from molecular materials from X-ray powder diffraction data,” J. Phys. Chem. BJPCBFK 101, 6532.CrossRefGoogle Scholar
Harris, K. D. M., Johnston, R. L., and Kariuki, B. M. (1998). “The genetic algorithm: Foundations and applications in structure solution from powder diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ10.1107/S0108767398003389 54, 632645.CrossRefGoogle Scholar
Harris, K. D. M., Treymayne, M., and Kariuki, B. M. (2001). “Contemporary advances in the use of powder X-ray diffraction for structure determination,” Angew. Chem., Int. Ed.ACIEF510.1002/1521-3773(20010504)40:9<1626::AID-ANIE16260>3.0.CO;2-7 40, 1626–651.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Harris, K. D. M., Tremayne, M., Lightfoot, P., and Bruce, P. G. (1994). “Crystal structure determination from powder diffraction data by Monte Carlo methods,” J. Am. Chem. Soc.JACSAT 116, 35433547.CrossRefGoogle Scholar
Hibble, S. J., Cheetham, A. K., Bogle, A. R. L., Wakerley, H. R., and Cox, D. E. (1988). “The synthesis and structure determination from powder diffraction data of LaMo5O8, a new oxomolybdate containing Mo10 clusters,” J. Am. Chem. Soc.JACSAT 110, 32953296.CrossRefGoogle Scholar
Howard, S. A. and Snyder, R. L. (1983). “Evaluation of some profile models used in profile fitting,” Adv. X-Ray Anal.AXRAAA 26, 7380.Google Scholar
Huang, T. C. (1988). “Precision peak determination in X-ray powder diffraction,” Aust. J. Phys.AUJPAS 41, 201212.CrossRefGoogle Scholar
Huang, T. C. and Parrish, W. (1975). “Accurate and rapid reduction of experimental x-ray data,” Appl. Phys. Lett.APPLAB10.1063/1.88404 27, 123124.CrossRefGoogle Scholar
Jansen, I., Peschar, R., and Schenk, H. (1992). “On the determination of accurate intensities from powder diffraction data. I. Whole-pattern fitting with a least-squares procedure,” J. Appl. Crystallogr.JACGAR10.1107/S0021889891012104 25, 231236.CrossRefGoogle Scholar
Jouanneaux, A., Verbaere, A., Guyomard, D., Piffard, Y., Oyetola, S., and Fitch, A. N. (1991b). “Sb2(PO4)3, a new mixed-valence antimony phosphate. Preparation and crystal structure,” Eur. J. Solid State Inorg. Chem.EJSCE5 28, 755765.Google Scholar
Jouanneaux, A., Verbaere, A., Piffard, Y., Fitch, A. N., and Kinoshita, M. (1991a). “How to distinguish between monoclinic distortions of Nasicon and Sc2 (WO4)3 structure types from X-ray powder patterns? Crystal structure of Ni0.5Zr2(PO4)3,” Eur. J. Solid State Inorg. Chem.EJSCE5 28, 683699.Google Scholar
Kariuki, B. M., Serrano-González, H., Johnston, R. L., and Harris, H. D. M. (1997). “The applications of a genetic algorithm from solving crystal structures from powder diffraction data,” Chem. Phys. Lett.CHPLBC 280, 189195.CrossRefGoogle Scholar
Le Bail, A., Duroy, H., and Fourquet, J. L. (1998). “Ab-initio structure determination of LiSbWO by X-ray powder diffraction,” Mater. Res. Bull.MRBUAC10.1016/0025-5408(88)90019-0 23, 447452.CrossRefGoogle Scholar
Markvardsen, A. J., David, W. I. F., Johnson, J. C., and Shankland, K. (2001). “A probabilistic approach to space-group determination from powder diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ 57, 4754.CrossRefGoogle ScholarPubMed
Masciocchi, N., Moret, M., Cairati, P., Sironi, A., Ardizzoia, G. A., and La Monica, G. (1994). “The multiphase nature of the Cu(p z) and Ag(p z)(H p z=Pyrazole) Systems: Selective syntheses and ab-initio x-ray powder diffraction structural characterization of copper(I) and silver(I) pyrazolates,” J. Am. Chem. Soc.JACSAT10.1021/ja00096a025 116, 76687676.CrossRefGoogle Scholar
McCusker, L. (1988). “The ab initio structure determination of Sigma-2 (a new clathrasil phase) from synchrotron powder diffraction data,” J. Appl. Crystallogr.JACGAR 21, 305310.CrossRefGoogle Scholar
McCusker, L. B. (1993). “Zeolite structure analysis using powder diffraction data,” Mater. Sci. ForumMSFOEP 133–136, 423434.CrossRefGoogle Scholar
McCusker, L. B., Baerlocher, Ch., Jahn, E., and Bülow, M. (1991). “The triple helix inside the large pore aluminophosphate molecular sieve VPI-5,” ZeolitesZEOLD310.1016/0144-2449(91)80292-8 11, 308313.CrossRefGoogle Scholar
Meden, A., Grosse-Kunstleve, R. W., Baerlocher, C., and McCusker, L. B. (1997). “Rietveld refinement of the as synthesized and partially calcined forms of the molecular sieve GaPO4ZON,” Z. Kristallogr.ZEKRDZ 212, 801807.CrossRefGoogle Scholar
Norby, P., Christensen, A. N., Fjellvåg, H., Lehmann, M. S., and Nielsen, M. (1991). “The crystal structure of Cr8O21 determined from powder diffraction data. Thermal transformation and magnetic properties of a chromium-chromate-tetrachromate,” J. Solid State Chem.JSSCBI10.1016/0022-4596(91)90193-L 94, 281293.CrossRefGoogle Scholar
Nowell, H., Attfield, J. P., Cole, J. C., Cox, P. J., Shankland, K., Maginn, S. J., and Motherwell, W. D. S. (2002). “Structure solution and refinement of tetracaine hydrochloride from X-ray powder diffraction data,” New J. Chem.NJCHE5 26, 469472.CrossRefGoogle Scholar
Pawley, G. S. (1981). “Unit-cell refinement from powder diffraction scans,” J. Appl. Crystallogr.JACGAR10.1107/S0021889881009618 14, 357361.CrossRefGoogle Scholar
Plévert, J., Yamamoto, K., Chiari, G., and Tatsumi, T. (1999). “UTM-1: An eight-membered ring zeolite with the basic building chains of the MFI topology,” J. Phys. Chem. BJPCBFK 103, 86478649.CrossRefGoogle Scholar
Reck, G., Kretshmer, R. G., Kutschabsky, L., and Pritzkow, W. (1998). “POSIT-a method for structure determination of small partially known molecules from powder diffraction data. Structure of 6-methyl-1,2,3,4-tetrahydropyrimidine-2,4-dione (6-methyluracil),” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ10.1107/S0108767388000315 44, 417421.CrossRefGoogle Scholar
Rietveld, H. M. (1969). “A profile refinement method for nuclear and magnetic structures,” J. Appl. Crystallogr.JACGAR10.1107/S0021889869006558 2, 6571.CrossRefGoogle Scholar
Savitzky, A. and Golay, M. J. E. (1964). “Smoothing and differentiation of data by simplified least squares procedures,” Anal. Chem.ANCHAM10.1021/ac60214a047 36, 16271639.CrossRefGoogle Scholar
Shankland, K., David, W. I. F., and Csoka, T. (1997). “Crystal structure determination from powder diffraction data by the application of a genetic algorithm,” Z. Kristallogr.ZEKRDZ 212, 550552.CrossRefGoogle Scholar
Shankland, K., David, W. I. F., Csoka, T., and McBride, L. (1998). “Structure solution of Ibuprofen from powder diffraction data by the application of a genetic algorithm combined with prior conformational analysis,” Int. J. Pharm.IJPHDE 165, 117126.CrossRefGoogle Scholar
Sivia, D. S. and David, W. I. F. (1994). “A Bayesian approach to extracting structure-factor amplitudes from powder diffraction data,” Acta Crystallogr., Sect. A: Found. Crystallogr.ACACEQ 50, 703714.CrossRefGoogle Scholar
Smrčok, L., Kopelhuber, B., Shankland, K., David, W. I. F., Tunega, D., and Resel, R. (2001). “Decafluoroquarterphenyl-crystal and molecular structure solved from X-ray powder,” Z. Kristallogr.ZEKRDZ 216, 6366.CrossRefGoogle Scholar
Snyder, R. L. (1993). “Analytical profile fitting of X-ray powder diffraction profiles in Rietveld analysis,” The Rietveld Method, edited by Young, R. A., IUCr, OUP Monograph 5, pp. 111131.Google Scholar
Sonneveld, E. J. and Visser, J. W. (1975). “Automatic collection of powder data from photographs,” J. Appl. Crystallogr.JACGAR10.1107/S0021889875009417 8, 1–7.CrossRefGoogle Scholar
Structure determination by powder diffractometry round robin (SDPDRR). (1998). http://www.cristal.org/SDPDRR/index.html.Google Scholar
Tremayne, M., Kariuki, B. M., and Harris, K. D. M. (1997). “Structure determination of a complex organic solid from X-ray powder diffraction data by a generalized Monte Carlo method: The crystal structure of red fluorescein,” Angew. Chem.ANCEAD 109, 788791.CrossRefGoogle Scholar
Werner, P.-E., Moustiakimov, M., Marinder, B.-O., and Knight, K. S. (1997). “Crystal structure of BaMo3O10 solved from powder diffraction data,” Z. Kristallogr.ZEKRDZ 212, 665670.CrossRefGoogle Scholar
Young, R. A. and Wiles, D. B. (1982). “Profile shape functions in Rietveld refinement,” J. Appl. Crystallogr.JACGAR10.1107/S002188988201231X 15, 430438.CrossRefGoogle Scholar
Zah-Letho, J. J., Jouanneaux, A., Fitch, A. N., Verbaere, A., and Tournoux, M. (1992). “Nb3(NbO)2(PO4)7 a novel niobium V oxophosphate: Synthesis and crystal structure determination from high resolution X-ray powder diffraction,” Eur. J. Solid State Inorg. Chem.EJSCE5 29, 13091320.Google Scholar