Hostname: page-component-586b7cd67f-rdxmf Total loading time: 0 Render date: 2024-11-24T10:17:45.688Z Has data issue: false hasContentIssue false

Ferroic phase transition in LaEr(MoO4)3

Published online by Cambridge University Press:  14 November 2013

A. Hernández-Suárez*
Affiliation:
Dpto. de Física Básica, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Tenerife, Spain
C. Guzmán-Afonso
Affiliation:
Dpto. de Física Fundamental y Experimental, Electrónica y Sistemas, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Tenerife, Spain
J. López-Solano
Affiliation:
Dpto. de Física Fundamental II, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Tenerife, Spain
C. González-Silgo
Affiliation:
Dpto. de Física Fundamental II, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Tenerife, Spain
M. E. Torres
Affiliation:
Dpto. de Física Básica, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Tenerife, Spain
N. Sabalisck
Affiliation:
Dpto. de Física Básica, Universidad de La Laguna, Avda. Astrofísico Fco. Sánchez, s/n, 38206 La Laguna, Tenerife, Spain
E. Matesanz
Affiliation:
C.A.I. Difracción de Rayos X, Universidad Complutense de Madrid, 28040 Madrid, Spain
J. Rodríguez-Carvajal
Affiliation:
Institut Laue-Langevin, 6 rue Jules Horowitz, BP 156, 38042 Grenoble Cedex 9, France
*
a) Electronic mail: [email protected]

Abstract

The ferroic phase transition in LaEr(MoO4)3 has been analyzed for the first time. It has been confirmed that this compound undergoes a phase transition from a tetragonal system (paraelectric-paraelastic phase), with space group P-421 m [β-Gd2(MoO4)3 averaged phase] to an orthorhombic system (ferroelectric-ferroelastic phase), with space group Pba2 [β'-Gd2(MoO4)3 phase] in a reversible process. This phenomenon, together with the observed demixing at high temperature has been studied using different techniques. LaEr(MoO4)3 samples have been obtained by the conventional solid-state synthesis. The thermal dependence of the crystal structure was studied by powder X-ray and neutron diffraction, following a new refining procedure in which the symmetry modes of atomic displacements from the paraelectric-paraelastic structure were analyzed. Dielectric spectroscopy measurements have confirmed the structural results, showing a very smooth phase transition. Finally, calculations within the framework of Density Functional Theory show a behavior of the lattice parameters similar to that observed in our experiments.

Type
Technical Articles
Copyright
Copyright © International Centre for Diffraction Data 2013 

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bergerhoff, G. and Brown, I. D. (1987). Crystallographic Databases, Allen, F. H. et al. (Hrsg.) International Union of Crystallography, Chester).Google Scholar
Brixner, L. H., Barkley, J. R. and Jeitschko, W. (1979). Handbook on the Physics and Chemistry of Rare Earth (Amsterdam: North-Holland).Google Scholar
González-Silgo, C., Institut Laue-Langevin D2B, Experimental Report of the Proposal 5-23-626 (accepted in 2010).Google Scholar
Jeitschko, W. (1972). “A Comprehensive X-ray Study of the Ferroelectric-Ferroelastic and Paraelectric-Paraelastic Phases of Gd2(MoO4)3 ,” Acta Crystallogr., Sect. B: Struct. Crystallogr. Cryst. Chem. 28, 6076.CrossRefGoogle Scholar
Kresse, G. and Furthmüller, J. (1996), “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys Rev. B 54, 1116911186.Google Scholar
Orobengoa, D., Capillas, C., Aroyo, M. I. and Pérez-Mato, J. M. (2009). “AMPLIMODES: symmetry-mode analysis on the Bilbao Crystallographic Server,” J. Appl. Crystallogr. 42, 820833.Google Scholar
Perez-Mato, J. M., Orobengoa, D. and Aroyo, M. I. (2010). “Mode crystallography of distorted structures,” Acta Crystallogr., Sect. A : Found. Crystallogr. 66, 558590.Google Scholar
Rodríguez-Carvajal, J. (1993). “Recent advances in magnetic structure determination by neutron powder diffraction,” Physica B 192, 5569.Google Scholar
Tsukada, Y., Honma, T. and Komatsu, T. (2009). “Self-organized periodic domain structure for second harmonic generations in ferroelastic β′-(Sm,Gd)2(MoO4)3 crystal lines on glass surfaces,” Appl. Phys. Lett. 94, 041915.Google Scholar